

Small is Beautiful: What we can learn from grain-scale processes about sediment transport

Bernhard Vowinckel

24th Arthur Thomas Ippen Award 41st IAHR World Congress June 26, 2025, Singapore

About me

Three types of grain-scale processes

Flocculation

Hindered settling

Complex flows of dense suspensions

Rio de la Plata estuary (Argentina) https://en.wikipedia.org

Flocculation of fine-grained sediments

- Flocculation experiments of real clays onboard the International Space Station (ISS)
- Focus on cohesive forces of clay minerals
- Long term observations that are not possible on Earth

Satellite image of the Mississippi estuary

Flocculation under microgravity

Cape Canaveral, FL, June 29, 2018

Focus on

- Salinity comparable to ocean water
- Kaolinite, Montmorillonite and sand

[Krahl et al., 2022; Rommelfanger et al., 2022]

Experimental setup

Cuvette no. 2: 8 ppt Kaolinite

Binary Colloidal Alloy Test (BCAT) apparatus with magnetic bead for stirring

Cuvette no. 7: 4 ppt Kaolinite 4 ppt Montmorillonite

99 days

Observation time:

Image recordings

With Fabian Kleischmann

Aggregate growth

Oscillations (g-jitter)

Particle-resolved Direct Numerical Simulations

Basic Fluid Solver

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot (\mathbf{u}\mathbf{u}) + \frac{1}{\rho}\nabla p = \nu \nabla^2 \mathbf{u} + \mathbf{f}_{drag}$$

Fully-resolved [Uhlmann, 2005] → Particle larger than grid cell size

Lagrangian mesh (red markers) and Eulerian mesh (black lines)

Immersed Boundary Method (IBM)

$$m_p \frac{\mathrm{d}\mathbf{u}_p}{\mathrm{d}t} = \mathbf{F}_h + (\rho_p - \rho_f) V_p \mathbf{g} + \mathbf{F}_c$$

Hydrodynamic buoyancy Collisio

forces

Collision/ contact

Particle-resolved Direct Numerical Simulations

Basic Fluid Solver

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot (\mathbf{u}\mathbf{u}) + \frac{1}{\rho}\nabla p = \nu \nabla^2 \mathbf{u} + \mathbf{f}_{drag}$$

Fully-resolved [Uhlmann, 2005] → Particle larger than grid cell size

Collision model for non-cohesive sediment

 \rightarrow Excellent agreement with experiments

- $L_{x,y,z} = 20 d_p$
- $d_p/h = 20$
- Periodic boundary conditions
- 25,000 oscillations
- No gravity!

Initial particle diameter: $d_p = 1.15 \cdot 10^{-4} [m]$ Density ratio: $\rho_s = \rho_p / \rho_f = 2.60 [-]$ Kinematic fluid viscosity: $v_f = 10^{-6} [m^2/s]$ Oscillation frequency:f = 60 [Hz]

Oscillation amplitude: $A = \{0.05, 0.1, 0.2\} d_p$ Solid volume fraction: $\phi = \{0.042, 0.084, 0.164\} [-]$

Reynolds Number:

 $Re = u_{f,max} d_p / v_f = \{0.25, 0.5, 1.0\}$ with: $u_{f,max} = A_f \Omega$

Non-dim. frequency:

Stokes number:

 $S = d_p^2 \Omega / (36 v_f) = 0.14$

 $St = \tau_p / \tau_f = |\rho_s - 1| 2S = 0.44$

Small is Beautiful: What we can learn from grain-scale processes about sediment transport Bernhard Vowinckel, Department of Hydroscience, TU Dresden

based on ISS

experiments

Aggregation due to g-jitter

Small is Beautiful: What we can learn from grain-scale processes about sediment transport Bernhard Vowinckel, Department of Hydroscience, TU Dresden

Slide 14

Three types of grain-scale processes

Flocculation

Hindered settling

Complex flows of dense suspensions

Rio de la Plata estuary (Argentina) https://en.wikipedia.org

Flocculation and hindered settling

- Most mass of cohesive sediments is accumulated within flocs
- Marine snow main contribution to vertical carbon flux
- Aggregates of cohesive sediments are small and fragile, hence hard to measure directly

Electron microscope images of Kaolin clay aggregates formed in salt water [Vowinckel et al., Flow, 2023]

Marine snow in the deep Gulf of Alaska https://oceanexplorer.noaa.gov/facts/marinesnow.html

Motivation

Small is Beautiful: What we can learn from grain-scale processes about sediment transport Bernhard Vowinckel, Department of Hydroscience, TU Dresden Slide 17 Slide

Computing porous particle dynamics

Small is Beautiful: What we can learn from grain-scale processes about sediment transport Bernhard Vowinckel, Department of Hydroscience, TU Dresden Slide 18 SINGAPORE DRESDEN Slide 21 SINGAPORE DRESDEN SINGAPORE DRESDEN Concept

Settling in stratified fluids

Floc of resolved particles settling in densely stratified medium [Maches and Meiburg, private communication, 2024] Porous aggregate settling in densely stratified medium

Simulation configuration

Simulation parameters:

- $Re = u_{St}D/\nu = 1$
- $\frac{\rho_{agg}}{\rho_f} \approx 1.1$
- Volume fraction: $\phi \in \{0..0.3\}$
- Drag reduction factor $\Omega \in \{0.95..0.7\}$
- Permeability $\epsilon \in \{0.95...0.966\}$
- \rightarrow Three types of particles with same terminal settling velocity

Computational domain:

- $L_x \times L_y \times L_z = 65D \times 65D \times 65D$
- $N_x \times N_y \times N_z = 910 \times 910 \times 910$
- Triple periodic boundary conditions
- Artificial vertical pressure gradient

Simulation results: various aggregate concentration

Small is Beautiful: What we can learn from grain-scale processes about sediment transport Bernhard Vowinckel, Department of Hydroscience, TU Dresden Slide 21

Simulation results: various drag reduction factor

Small is Beautiful: What we can learn from grain-scale processes about sediment transport Bernhard Vowinckel, Department of Hydroscience, TU Dresden

Slide 22

Settling velocity as a function of concentration

Very good agreement and potential to extend to porous particles

Three types of grain-scale processes

Flocculation

Hindered settling

Complex flows of dense suspensions

Rio de la Plata estuary (Argentina) https://en.wikipedia.org

Mudslides as a natural hazard

CNN.com

1. Drought

- 2. Wild fire (Thomas Fire, 2018) → Incineration of all vegetation
- 3. Intensive rainfall
 → mudslids
 → 23 casualties
 → >207 Million USD damage

ection of mud

San Ysidro creek, CA, mudslide aftermatch

Dynamics of mudslides

Dynamics of mudslides

Risk (frequency and magnitude) is going to increase due to climate change!

Rheology of sediment suspensions

 \rightarrow Rheology: study of the flow and deformation of matter \rightarrow Flow curves

Shear rate ($\dot{\gamma}$) [s⁻¹]

 \rightarrow How does the sediment load alter the flow behavior of the river?

Simulation setup

Small is Beautiful: What we can learn from grain-scale processes about sediment transport Bernhard Vowinckel, Department of Hydroscience, TU Dresden

4339

0.85

2.1

10

25.6

Experiments by Aussillous et al. (JFM, 2013)

Brinkman equation:

$$\frac{\partial p^f}{\partial x} - \frac{\partial \tau^f}{\partial z} + \frac{\eta}{K}(U - u^p) = 0$$

Momentum equation for the mixture $\tau^{p}(z) + \tau^{f}(z) = \tau^{f}(h_{p}) - \frac{\partial p^{f}}{\partial x}(h_{p} - z)$

where

$$\tau^f = \eta_e \left(\frac{dU}{dz}\right)$$

 $\tau^p = \mu p^p$

Simulation runs

[Vowinckel et al., JFM, 2021]

Rheology of mobile sediment beds

Macroscopic friction $\mu = \tau/p_p$

- Good agreement with experimental results
 - [Vowinckel et al., JFM, 2021]

Rheology of mobile sediment beds

Macroscopic friction $\mu = \tau/p_p$

- Good agreement with experimental results
 - [Vowinckel et al., JFM, 2021]

Comparison to two-phase modeling

[Aussillous et al., in press, 10.22541/essoar.173557601.14442343/v1]

Towards more complicated flows

St = 0.065Viscous regime – low shear

With Sudarshan Konidena and Alireza Khodabakhshi

St = 120Inertial regime – high shear

Rolling vs sliding

[Konidena, ..., Vowinckel, PRL, in revision, arXiv:2505.04242v1]

Conclusions

 Flocculation: Can be triggered and promoted by oscillations/j-gitter

 Hindered settling: Applicable to porous particles, but weaker counter flows

 Rheology of sediments: provides adequate closures for two-phase flow models

