Global Water Security ⇒ Hydro-epidemiological Studies

Professor Roger A. Falconer

Past President of IAHR (2011-15)

Emeritus Professor of Water Engineering, Hydro-environmental Research Centre (HRC) School of Engineering, Cardiff University, UK

Chair Professor, Hohai University and Yangtze Institute for Conservation and Development, China

Global Water Security ⇒ Why Global Solutions?

Global Water Security ⇒ Growing Concern

Innovative Water Partnerships Experiences, Lessons Learned and Proposed Way Forward

Global Water Security ⇒ Key Challenges

- Climate Change ⇒ global temperature rise on track to be 3-5°C¹ ⇒ above 1.5°C IPCC target
- Floods and Droughts ⇒ more extreme events
- Population Growth ⇒ 81m more per annum²
- 70% of world's fresh water locked up in ice
- Aquifers draining more rapidly than recharge rate
- 70% of world's water currently used to grow food
- UN SDGs ⇒ Goal 6 Clean Water and Sanitation

Note: ¹ - UN WMO and ² - 2020 Census

Global Water Security ⇒ Typical Challenges

The ancient Romans had better water quality than half the people alive now.

70% of the world's fresh water supply is devoted to agriculture.

CARDIF

CAERDY

Source: http://water.org/learn-about-the-water-crisis/

Water Pollution ⇒ R. Wharfe, UK (2020)

Pristine River Wharfe at Bolton Abbey

CARL UNIVE Combined Sewer Overflow ⇒ Point Pollution CAERDYD

Bathers in River Wharfe - Ilkley

Measured E. coli in River Wharfe - Ilkley

E.coli (cfu/100 ml) samples collected 10th Dec 2019

UNIVERSITY

AERDY

EU BWD Standards for Recreational Waters

Classification	Enterococci (cfu/100ml)	<i>E. coli</i> (cfu/100ml)	Percentile
Inland Waters			
Excellent	200	500	95
Good	400	1000	95
Sufficient	330	900	90
Coastal Waters			
Excellent	100	250	95
Good	200	500	95
Sufficient	185	500	90

Key observations from *E.coli* samples:

- Levels ≫ downstream of CSOs
- Exceed 'Sufficient' status for Wharfe downstream of Ashlands CSO

UN Sustainable Development Goals ⇒ 2030

Hydro-environmental Engineering and Research (IAHR) ⇔ critical to delivering all 8 targets of UN SDG 6

CARDIF

CAERDY

Water Management ⇒ Water Cycle

PRIFYSGOL

9

Water Footprint of a Nation

- Water Footprint
 water consumed and used to produce goods and services within a nation
- Two components:-

Internal Water Footprint ⇒ from inside country External Water Footprint ⇒ from other countries

Water Footprint of a Nation = Water used internally
 + Virtual water imported* – Virtual water exported*

^{*}Imported/Exported through goods and services

Virtual Water Footprint

One bath contains 150 litres of water

Blue WF of EU Cotton Consumption

SOURCE;Hoekstra & Chapagain, 2008]

CARDIF

UNIVERSIT

PRIFYSGOL

Virtual Water Impacts ⇒ Shrinking Aral Sea

Consumption in one place can impact drastically on water resources elsewhere

Need to Educate Public ⇒ Culture Change?

Male news reader can wear same suit daily ⇒ Female expected to wear different clothes daily

Who Should Pay ⇒ Polluted Discharges?

Who Should Pay ⇒ Eco-systems Services?

Example Water Solution Vertical Farming

Source: https://www.Bloomberg.com/news/features/2017-09-06

Key details:

- High-tech farming ⇒ complex models
- Controlled humidity, temperature etc.
- Pesticide free
- 350 x more food per unit land area
- Only 1% of water needed for food growth vis-a-vis traditional farming

Cloud to Coast ⇒ Need Systems Solutions

Regional Water Security ⇒ Why System Solutions? Hydro-epidemiological Studies: Ribble River Basin & Fylde Coast, U.K.

Ribble and Fylde Coast - NW England

Blackpool ⇒ one of UK's prime tourist beaches

Blackpool Prime UK Seaside Resort

Water Assets ⇒ Investments in 1990s

- \$800M invested
 from 1993 96
- 3 new waste-water treatment works
- 5 new larger pumping stations
- Still some noncompliance during bathing season

Background & Aim of Studies in Mid-1990s

- Failure to meet 1976 EU Bathing Water Directive
- Main problem ⇒ thought to be Combined Sewer Overflows (CSOs) discharging along coast & river
- Field surveys alone failed to identify main causes of non-compliance with EU BWD
- Aim ⇒ refine HRC hydro-epidemiological models
- Quantify impacts of CSOs and catchment inputs on bathing water compliance along Fylde Coast
- Investigate influence of tides, river & CSO inputs,
 winds etc. on bathing water quality & health risk

Water Level and Velocity Calibration

Ribble Estuary: Faecal Coliform Calibration

Model Calibration at 11 milepost

ARDIF

[~]A^ERDY

Faecal Coliform Model Predictions

Ribble Estuary and Fylde Coast, UK

Review of Completed Study (2010-12)

- These studies by HRC researchers gave good model agreement when calibrated separately for linked 1-D & 2-D models, but needed:
 - Different values of kinetic decay rates
 - Different values of dispersion-diffusion coefficients
 - Different flow area representations over linked region
 - Different values and formulations for roughness coefficients in 1-D (k_s) and 2-D (n) models
 - Simplified treatment of decay and source inputs for highly episodic point and diffuse source inputs
 - 3-D modelling of hydro-epidemiology in coastal zone

Major New River Basin Study ⇒ 2011-16

- EU Water Framework Directive 2006, applied from 2015, has much stricter Bathing Water standards
- Concern about impact of recent land use changes on river basin & coastal bathing water quality
- Develop an integrated Catchment-to-Coast model
 with urban & rural inputs and land use changes
- Collect extensive data on *E.coli* loads and fluxes
- Model hydro-epidemiological processes to predict *E.coli* levels & health impact along Bathing waters

Integrated Model Studies for EU WFD 2015

Study Included:

- Catchment, river and coastal models of flow, sediment & *E.coli* processes
- Extended 3-D coastal model including: tides, sediments & *E.coli* processes
- Climate & land use changes on urban & rural source inputs on river water quality & coastal *E.coli* levels

HSPF Catchment Configuration

 28 different river basin & catchment types, including:
 (i) rural & urban,
 (ii) steep & mild terrain slopes,

(iii) various landuse types:- arable,pasture & forested

Field Surveys Along Coast and Estuary

- Comprehensive estuarine and offshore surveys
- Drogue tracking, water quality and irradiance depth profiles, and sediment samples from field surveys

1D RNM ⇒ Model Configuration

1D RNM ⇒ SSC and *E.coli* Verification

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

FIO Levels ⇒ River Column, SSC and Bed

• FIO distribution in river water, on suspended sediments and on bed sediments

Bed and Suspended Sediments with adsorption & desorption ⇒ important pathway for FIO transport

Conclusions ⇒ General and Specific

- Water Security ⇒ increasing concern, particularly with climate change ⇒ needs Global Solutions
- Water Footprint & Virtual Water ⇒ needs to be better understood by politicians, industry & public
- Water Security needs systems-based solutions at Global & Regional (Catchment to Coast) Scales
- Hydro-epidemiological studies show *E.coli* levels depend on hydraulics, biochemistry & source inputs
- Sediment Transport ⇒ Ad-/de-sorption of *E.coli* provides key FIO transport process in wet weather

Professor Roger A. Falconer Email: FalconerRA@cardiff.ac.uk

