
N
U

M
B

E
R

 4
 / 
  2
0
2
0

 
 
 

 
AI–BASED EVENT MANAGEMENT  
AT UNITED UTILITIES SEE PAGE 104 
 
SMART WATER METERING AND AI SEE PAGE 114 
 
FROM LABYRINTH TO  
PIANO KEY WEIRS: THE STORY SEE PAGE 126 
 
 

ARTIFICIAL  
INTELLIGENCE 



98 hydrolink  number 4/2020

Last year IAHR published a white paper[1] 
on the ways that water planning and 
management can benefit from advances 
in artificial intelligence (AI) and machine 
learning (ML).  As discussed in this paper, 
the AI and ML applications in water 
management and hydro-environment 
engineering and research have been 
increasing rapidly during the last few 
years. In the present issue of Hydrolink, 
the first of two focusing on AI, four articles 
describe the use of AI and ML methods in 
the operation and management of different types of water systems. 
AI methods and tools have been embraced by many water utilities 
which use them to support the planning, operation and maintenance 
of their distribution networks, improve customer service and predict 
water demand. These utilities often deal with large volumes of data, 
often referred to as “big data”. 
 
The article by Cominola, Monks and Stewart in this issue discusses 
the application of Artificial Neural Networks (ANNs) on data from smart 
water meters to predict water demand and increase operational 
efficiency in water supply systems. In addition, the article points out 
that advance data analytics in combination with high-resolution smart 
meter data can increase customer engagement, proactively handle 
customer complaints and credit management, and provide innovative 
customer products and services. The vision for the future is that 
utilities serving different sectors, such as water, electricity, gas, and 
telecommunications, will be able to identify and exploit synergies in 
order to share big data and use AI techniques to reduce operating 
costs and improve service. 
 
The use of AI in water distribution networks is also the subject of the 
article by Romano, Boatwright, Mounce, Nikoloudi and Kapelan, 
which describes a system that uses a combination of several self-
learning AI techniques and statistical data analysis tools to detect 
events such as pipe bursts and leaks, as well as equipment and other 
failures in the network. The system learns from historical events to 
improve the detection of future events. This system, which was 
developed for United Utilities in northwest England, significantly 
improved the ability to deal with such events.   
 
The use of AI and ML for the management of sewers is described in 
the article by Myrans, Zheng and Kapelan. Artificial Neural Networks 
and Decision Trees have been used to predict sewer collapse / 
blockage rates that are critical for proactive asset management of 
sewer systems. They used data from level, flow and water quality 
sensors, as well as from other sources, such as closed-circuit 
television (CCTV) inspection videos in combination with information 
on the sewer characteristics, environmental conditions and mainte-
nance. ML methods have also been used to detect and predict 
blockages and to develop models that can predict threshold flow 
conditions that lead to self-cleansing conditions in sewers. The article 
presents an example of the use  

of cutting edge ML and computer vision 
techniques for the analysis and classifi-
cation of tens of thousands of CCTV images 
of sewers of South West Water in the United 
Kingdom, aimed at identified broken, 
cracked, deformed or otherwise damaged 
parts of the sewer network. 
 
AI methods have also been used in environ-
mental problems, as illustrated in the article 
by Lee, Guo. Chan, Choi, Wang and Leung, 
which describes the development of a 

system for the real-time forecasting of harmful algal blooms. The 
system uses an ANN model that assimilates high-frequency data to 
predict sea surface temperature (and vertical density stratification) that 
controls the stability of the water column, one of the two conditions 
(the other being the level of nutrients) for the algal population to grow.  
The article also describes the development of a system for the classifi-
cation of high-frequency microalgae image data that can be acquired 
in-situ through an imaging FlowCytobot, an automated, submersible 
equipment that can be continuously deployed underwater for months. 
The classification system employed a random forest algorithm with 
robust image processing and feature selection techniques and a pre-
trained Convolution Neural Network. 
 
Digitalisation is described as a major technology shock of the 21st 
century, which is affecting every aspect of our lives, from digital 
banking and retail to the entertainment industries. Water management 
and hydro-environmental engineering are no exception to that, but are 
perceived to lag behind other sectors in coming fully onboard the 
digitalization train. The articles in this issue of Hydrolink demonstrate 
clearly the potential of the digital technology applications for water 
management and hydro-environment engineering, which have already 
made their impact in practice. The breadth of applications, from water 
efficiency improvements via smart domestic water metering, through 
water and wastewater network anomaly detection, to algal bloom 
management, also demonstrate the level of maturity that has been 
attained in the development and application of hydroinformatics, a 
science field pioneered and championed by IAHR members. From the 
late 1980s and early 1990s, IAHR (together with IWA) was among the 
first professional organizations to recognize the potential and impor-
tance of this new field, by establishing an IAHR/IWA Joint Committee 
on Hydroinformatics, starting the Journal of Hydroinformatics 
(published by IWA) and supporting the organisation of a bi-annual 
conference on Hydroinformatics. Judging by the quality of the papers 
presented in this issue, the water sector will soon catch up with the 
sectors and industries that have gone further on the digital transfor-
mation curve.  
 
 
[1] Savić, D. 2019:  “Artificial Intelligence: How can water planning and management  

benefit from it?”, an IAHR white paper,  
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Dragan Savić is Chief Executive Officer at KWR Water Research Institute based in the 
Netherlands. He is also Professor of Hydroinformatics at the University of Exeter in the UK 
and Distinguished International Professor at the National University of Malaysia. 
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Since a wastewater network is often expected 
to collect sewers from all different water users 
in a particular urban region, its spatial scale 
as well as the structure complexity has 
typically substantially increased over the past 
few decades as a result of population growth 
and quick urbanization. These physical 
changes combined with system ageing result 
in a number of issues during the sewer 
network management or operation. Typical 
issues include (i) pipe blockages (e.g., sand 
sediments) that can directly affect flow 
capacity of the sewer pipes, causing manhole 
overflows and odour problems, (ii) illicit 
inflows (e.g., toxic discharges from local 
factories, rainwater, and groundwater) that 
may induce functional failures of wastewater 
treatment plants (WWTPs) and consequently 
result in significant contamination of the 
receiving water body, and (iii) leaks of the 
sewers that can directly induce serious 
contamination to the surrounding water 
environments. To solve these problems, 
deploying sensors in the sewer networks can 
be promising, aimed to detect or warn such 
events in an efficient manner.  

Currently, sensors are often only placed at the 
end of a sewer system, monitoring treatment 
processes and discharges into the local 
environment. However, this is slowly 
changing with the introduction of low-cost 
robust sensors, providing the network 
visibility required to inform and improve pipe 
maintenance and rehabilitation. This constant 
stream of data can provide many insights into 
the status of a network, although many of 
these are hard to spot with only human eyes. 
Fortunately, machine learning thrives in the 
age of data, capable of interpreting patterns 
in vast quantities of data that no human being 
could ever hope to identify. These data driven 
techniques have been well demonstrated in 
many other professional sectors including 

telecommunications, gas/oil and finance, 
where inordinate quantities of data are 
produced every day. 

Working with cutting edge AI technology 
provides the wastewater industry with a 
wealth of opportunities for more efficient 
means of practice. The strengths of machine 
learning include the ability to rapidly process 
and highlight trends and patterns in 
enormous volumes of data. From this skillset 
we can achieve the automation of tasks that 
would be extremely time consuming and 
tedious for a trained professional, real time 
analysis of sensor data and effective 
management of complex interrelated 
systems. This article will discuss a number of 
successful applications of machine learning 
within the wastewater sector, providing a 
number of examples, including one with 
more in-depth information.  

Machine Learning in sewer 
Management  
Artificial Intelligence (AI) and Machine 
Learning (ML) in particular are playing an 
increasing role in the management of sewer 
systems, ranging from improved operation 
and maintenance of these systems to their 
long-term planning and asset management. 
Most of AI based solutions are built around 
smart processing of some data and extracting 
the useful information from it[5]. The data often 
comes from various sensors installed in these 
systems (e.g. level, flow and water quality 
sensors) but frequently from other sources 
too (e.g. inspection CCTV videos, digital 
maps, asset data, etc.). The current situation 
in most water and sewer utilities is often 
described as DRIP – Data Reach Information 
Poor. AI/ML enables to solve this problem by 
extracting useful information from large 
amounts of data and using it for improved 
management of sewer systems. 

MACHINE LEARNING APPLICATIONS 
IN SEWER SYSTEMS  
BY JOSH MYRANS, FEIFEI ZHEN AND ZORAN KAPELAN

Given the growing scarcity of clean freshwater sources, the water industry as a whole has largely focused on the 
sustainable distribution and security of potable water. However, the less glamorous task of wastewater management 
is a constant pressure for all, requiring an equally significant investment into research and development. As if to 
further highlight this problem, the average age of sewer pipes in the UK is rapidly increasing, with many pipes still 
in service long past their intended lifespan. This article explores the advances in machine learning which are helping 
to better manage wastewater (or sewer) networks. 
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Some of the examples of ML methods 
developed for sewer systems include:  
• ML for predicting sewer collapse/blockage 

rates and the remaining asset life.  
ML methods such as Artificial Neural 
Networks and Decision Trees have been 
used to predict sewer collapse / blockage 
rates that are critical for proactive asset 
management of sewer systems [1]. Most of 
these methods work by establishing a link 
between the above variables and potential 
explanatory factors such as sewer charac-
teristics (e.g. pipe material, diameter, slope, 
condition), the environment (e.g. soil type, 
weather) and other factors (e.g. 
maintenance level). This data is used by 
the AI method to effectively learn under 
what combination of conditions sewer 
blockages or collapses occur.  

• Early warning systems for blockages and 
other events in sewer systems. ML 
methods such as advanced Artificial Neural 
Networks and Fuzzy Theory have been 
combined with fault detection and isolation 
methods such as Statistical Process 
Control to detect or even predict blockages 
in sewer systems by raising alarms in near 
real-time [10]. Detection is typically done in 
the case of more instantaneous blockage 
events whereas prediction is usually more 
accurate for the gradually forming 
blockages (e.g. due to siltation or 
fat/oil/grease build up). 

• Flood risk assessment and forecasting. The 
Cellular Automata based methodology has 
been used to predict the extent of flooding 
in the urban environment [6]. When 
compared to more conventional methods, 
these and similar ML-based methods tend 
to be computationally much faster yet 
accurate enough which enables their appli-
cation over much larger geographical areas 
and/or in flood forecasting in the near real-
time context.  

• Augmented Reality (AR) for improved 
visualisation and inspection of sewer 
system assets. AR methods that combine 
Virtual Reality with conventional video 
feeds have been used to enable improved 
visualisation of sewers and other under-
ground assets. This may involve presen-
tation of other data of interest (e.g. asset 
characteristics, current or predicted water 
level at the location, etc.). These methods 
provide great help to technicians doing 
work in the field.  

• Sewer self-cleansing. ML methods such as 
Random Forests have been used to 
develop models that can predict threshold 
flow conditions that lead to self-cleansing 
conditions in sewers [8]. This, in turn, can 
be used for the (re)design of these 
systems that ensures more effective 
sediment transport in sewer systems.  

• Real-time (online) modelling of sewer 
system. Data is crucial to enable the appli-
cations of various ML methods. 
Unfortunately, in many cases system state 
observations (e.g., i.e. flows, water depth 
and other state variables) are scarce. 
Sensor data can be used to enable the 
estimation of sewer system state at 
different locations in the system, especially 
where sensors are not present. For 
example, a research group from Zhejiang 
University in China has successfully 
utilized the water supply data in a novel 
way to drive the real-time simulation of the 
wastewater network [11]. The key feature of 
this modelling approach is the novel use of 
smart demand metering sensors from the 
water supply systems to enable more 
accurate state estimation of sewer 
systems. This, in turn, enables to develop 
real-time sewer models in a more cost-
effective manner.  

• Real-time sewer sensor data validation. 
Bayesian type methods have been 

combined with Neural Networks and 
Interval Mathematics to validate sensor 
data on flows, depths, electro-conductivity) 
in near real-time [2]. 

 
Note that the above examples present only a 
small sample of AI/ML methods and applica-
tions for improved management of sewer 
systems. The next section presents another, 
more detailed example of a successful ML-
based solution for solving a real-world 
challenge in these systems.  

Automated sewer condition 
assessment using CCTV analysis 
Background  
Currently the most common method of 
inspection for sewers is through the use of 
CCTV cameras, which traverse the network 
recording footage of the pipe interiors for 
analysis by trained technicians. These 
surveys are performed regularly and are vital 
to the effective maintenance of the network. 
However, most networks contain tens, if not 
hundreds of thousands of kilometres of 
sewer pipe, resulting in a constant stream of 
CCTV footage which must be manually 
reviewed. The labour-intensive nature of this 
task, makes it both time consuming and 
expensive. Furthermore, surveys are 
commonly mislabelled due to subjective fault 
codes and pure human error. With some 
cameras footage can instead be labelled as it 
is collected, making the process more 
efficient. However, the accompanying 
analysis is often even worse, with technicians 
now performing multiple jobs at once, 
working in the elements and often next to a 
busy road.  

Fortunately, AI can begin to improve upon 
this vital practice, automating elements of the 
analysis procedure in real time, so as to take 
the pressure off of the surveyor. Not only 
should this improve the speed and efficiency 
of a survey’s collection, but dramatically 
reduce the cost and improve the uniformity of 
analysis. Removing the pressure of 
annotation from the surveyors enables them 
to concentrate on capturing high quality 
footage, only requiring additional input for the 
annotation of the most obscure faults.  

AI-based methodology 
To achieve automated fault detection and 
classification, a number of cutting edge 
machine learning and computer vision 
techniques are applied, namely random 
forests [3] and HOG (Histogram of Oriented 
Gradients) features [4]. In combination with a 
large dataset of labelled CCTV images these 
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Figure 1. Flowchart depicting the process of applying automated labelling to raw images.
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tools can first identify the presence of faults 
within an image, continuing to predict each 
individual fault type. This is done according to 
current industry standards, so as to produce 
a simplified report similar to that already used 
by the industry. Given the expedient and 
transportable nature of these techniques, the 
entire process can be performed in real time 
on site, in an office or on a server.  

The procedure can effectively be broken 
down in to five stages: ‘Frame Extraction & 
Pre-processing’, ‘Feature Extraction’, 
‘Detection’, ‘Classification’ and if applied to 
continuous footage ‘Smoothing’ [9]. The tasks 
associated with each stage are presented in 
the process diagram shown in Figure 1 
require the collection of the image from the 
source video before re-sizing the image to 
match a uniform resolution and converting to 
greyscale. These two steps bring the data in 
line with the training set and eliminate 
unnecessary complexity from the image. This 
complexity is further reduced during the 
‘Feature Extraction’ stage, where the image is 
reduced to a much smaller string of values 
representing its key components, this is done 
using HOG feature description. The next 
stage ‘Detection’ passes the feature 
descriptor to a single pre-trained random 
forest, which predicts the probability of the 
original frame containing a fault. If this is 
below a pre-determined threshold, the image 
is labelled as normal and the cycle restarts on 
a fresh image, otherwise a fault has been 
identified.  

Once a frame is suspected to contain a fault 
the ‘Classification’ stage can occur, in which 
the feature descriptor is passed to a bank of 
random forests. Each of these random forests 
predicts the probability of the image 
containing a single fault type, i.e. that there is 
a single forest for cracks, a single forest for 
root intrusions etc. By combining and evalu-
ating these predictions in a pairwise manner, 
a list of the most probable fault types can be 
identified for this image. Finally, if the image 
has been extracted from a continuous video 
source, additional information can be gained 
by comparing predictions to those of neigh-
bouring frames. This is achieved during the 
‘Smoothing’ stage, which applies a median 
filter among other techniques to process the 
entire sequence of predictions throughout a 
video. Amending predictions in this way 
massively reduces the impact of noise and 
eliminates many isolated misclassifications, 
producing a list of predictions much more in 
line with a surveyor’s expectations. 
 

It should be noted that all random forest 
classifiers will require training on a labelled 
dataset of images, processed using exactly 
the same ‘Frame Extraction & Pre-
processing’ and ‘Feature Extraction’ stages 
as those intended for use on the video. This 
training sees each tree in a forest grown by 
randomly selecting features and splitting the 
training dataset according to their pre-
assigned labels. 

Results  
This automated fault analysis has been 
performed in collaboration with the UK water 
company South West Water (SWW). This has 
granted access to a library of over 60,000 
images, around half of which contained at 
least one labelled fault. In order to demon-
strate the AI technology all these images are 
utilised via 25-fold cross validation [7]. This 
system ensures that training and testing 
datasets are not mixed, whilst making the 
most of the available data. Furthermore, the 
data has been arranged so as no images 

from the same pipe are present in both a 
training and testing fold. 

When the above approach was applied to the 
full dataset of labelled images an accuracy of 
88% with a true positive rate (TPR) of 0.98 
and a false positive rate of 0.24 was 
achieved. This means that the methodology 
correctly identified the status of the pipe 88% 
of the time, whether that be normal or faulty. 
Additionally, from the misidentifications, only 
2% were missed defects and 24% were 
mislabelled normal pipe. By modifying the 
threshold on which an image is classified as 
faulty, the ratio between TPR and FPR can 
also be tweaked, as demonstrated by the 
receiver operating characteristic cure shown 
in Figure 2. 

Applying the process of classification to 
detected faults, we must now acknowledge 
that a single image can contain multiple fault 
types. To do so, the methodology’s results are 
evaluated using intersection over union (IoU), 
which measures the similarity of the predicted 
list of fault types with the true list of fault labels 
for a given image. This is a much more 
challenging task, assuming an image contains 
only a single fault, guesswork alone will only 
achieve an IoU of 6% (as we are using 18 
different labels).  

Although only a prototype, the methodology 
performs well, achieving an IoU of 35% and an 
accuracy on the primary fault of 70%. This 
performance is constantly improving, with the 
increased availability of high-quality labelled 
data. A handful of examples are shown below 
in Figure 3. 
 
It is also worth noting that these results are 
achieved using the labels assigned by the 
human observers which we know can be 
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Figure 2. Receiver operator characteristic curve, 
demonstrating the range of achievable true 
(TPR) and false (FPR) positive rates. The dashed 
line represents the TPR and FPR for a 50:50 
guess. Finally, the AUC (area under curve) is a 
measure of the methods overall performance.

Figure 3. Example images and the classifications generated by the machine learning algorithm.
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inconsistent. A recent quality survey of 5% of 
the dataset found more than 30% of the labels 
to be incorrect, and 10% of them to be uninter-
pretable. Anecdotally this is good for the 
industry in general, however this does not 
bode well for the performance of data driven 
methodologies such as this.  
This first step in the application of AI to the 
problem offers a great option for screening 
vast amounts of CCTV footage. It is much 
quicker than human analysis and can be 
performed outside of work hours in a 
massively parallel manner. Given its current 
role as a decision support tool, it can assist 
with operational efficiency, but continued 
development and increased data quality 
provide great prospects. 
 
Conclusion  
This article addresses the use of Artificial 
Intelligence and machine learning in particular 
in the daily management of sewer systems. 
Several examples of such applications are 
provided including the technology for 
automated detection of faults in sewers.  

This technology is a good example of how 
machine learning and AI can be influencing 
the wastewater sector. Current practices rely 
on the slow and expensive, human based 
coding of CCTV sewer surveys that is not 
always fully reliable. The machine learning 
based technology enables the automation of 
some of that process, accurately and more 
consistently identifying the presence of faults 
whilst providing a good estimate of potential 
fault types. Therefore, the AI-based solution 
has a great potential to help technicians do 
their job more effectively in the future whilst 
reducing related costs. 
 
Based on the above and other examples 
presented in the paper it is clear that the future 
of AI and machine learning in the wastewater 
sector is bright and that the full potential of 
these methods is yet to be fully explored. n 
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Within the UK and worldwide water industry, 
pipe bursts/leaks and other similar failure 
events are recognised as high priority issues. 
These events cause economic losses to the 
water companies, represent an environmental 
issue and have a negative impact on the water 
companies’ operational performance, customer 
service and reputation. Water companies 
currently allocate a vast amount of resources to 
manage these events, but with limited success. 
The largest barriers to progress in the UK are 
the complexity of Water Distribution Systems 
(WDSs), ageing water supply infrastructure and 
unknown/unknowable condition of assets 
which make these events impossible to 
eliminate/avoid completely. In their day-to-day 
operations, water companies are tasked with 
operating their WDSs optimally to minimise 
costs and meet the required standards of 
service and, therefore, also managing contin-
gency situations when events occur. In this 
scenario, an efficient event management 
process provides opportunities to improve the 
situation (e.g. by reducing the number/ duration 
of supply interruptions, conserving water and 
reducing the overall carbon footprint). 
 
Event management in WDSs can be divided 
into three principal stages[1]: 1) event detection, 
2) event location and 3) event response. The 
first two stages involve detecting and localising 
the event in the network and raising the 
relevant alarm. The third stage is associated 
with the decisions and actions required to 
reduce and, ultimately, eliminate the negative 
impact of the event on the water company and 
its customers.  

In the last decade the importance of a 
proactive approach to event management, 
supported by near real-time assets monitoring, 
has become apparent as water companies in 
the UK have had to deal with tightening 
regulatory and budgetary constraints. 
Instrumentation, data gathering and communi-
cation technologies have also improved over 
the years and become less expensive to own 
and operate. As a result, a vast array of 
pressure and flow data originating from the 
many District Metered Areas (DMAs) that 
typically form a UK WDS is now frequently 
available and expected to quickly grow over 
time (especially data from pressure sensors, 
because of their lower cost and easier instal-
lation and maintenance when compared to 
flow sensors). The flow is nowadays typically 
measured at the DMA entry and exit points to 
allow the volume of water consumed in each 
DMA to be tracked over time and pressure is 
measured at a limited number of DMA critical 
monitoring points to ensure adequate pressure 
at the customers’ taps.  
 
The above monitored data can give insights 
into the operation and current/future status of 
WDSs (including pipe bursts/leaks and other 
similar events), especially when coupled with 
suitable data driven techniques. Advances in 
these techniques utilising advanced statistical 
tools, Machine Learning (ML) and Artificial 
Intelligence (AI) have led to the development 
of pioneering techniques that automatically 
manage and analyse increasing numbers of 
near real-time data streams aiming at enabling 
the detection[2-6], approximate location[7-9] and 

response[10,11] to pipe bursts/leaks and other 
similar network events. These techniques are 
very promising for alerting the water company 
personnel as soon as an event occurs, guide 
them to the problem area (i.e. for narrowing 
down the event search area within a DMA) and 
for supporting the control room operators in 
the identification of a suitable strategy to 
respond to those events in near real-time. This 
is mainly because they automate the mundane 
tasks involved in the data analysis process, 
provide more consistent analysis of the data 
and because they can efficiently deal with the 
vast amount of, and often imperfect, sensor 
data collected by modern supervisory control 
and data acquisition (SCADA) systems and 
extract information useful in making reliable 
operational decisions. 
 
United Utilities has had a longstanding 
relationship with some of the, water systems 
engineering and hydroinformatics, leading UK 
Universities and in recent years has initiated a 
number of collaborative innovation projects 
with them. In some cases, these collaborations 
have taken advantage of programmes such as 
STREAM (the Industrial Doctoral Centre for the 
Water Sector - http://www.stream-idc.net) and 
WISE (Water Informatics: Science and 
Engineering Centre for Doctoral Training - 
http://wisecdt.org.uk) that are partially funded 
by the Engineering and Physical Sciences 
Research Council (EPSRC) and involve having 
a student based at United Utilities’ headquarter 
pursuing an Engineering Doctorate (EngD) or 
Doctor of Philosophy (PhD) degree for indus-
trially relevant research. These programmes 
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AI–BASED EVENT MANAGEMENT 
AT UNITED UTILITIES 
BY MICHELE ROMANO, SHAUN BOATWRIGHT, STEVE MOUNCE, EIRINI NIKOLOUDI AND  
ZORAN KAPELAN 

Nowadays, water companies in the UK and worldwide face a significant challenge as they have ageing assets, have 
to deal with budget and resource constraints and, yet, they need to meet increasing customer expectations. To 
effectively respond to network events (e.g. pipe bursts/leaks, equipment failure, etc.), water companies must 
proactively manage the full life-cycle of events in the right priority and in a speedy manner. This will drive a higher 
efficiency in water network operations and result in much higher customer satisfaction. As digital technologies are 
penetrating every aspect of our society, the water sector is starting to leverage them to enable the move from reactive 
to proactive event management. This article presents three examples of the work that United Utilities has carried 
out in collaboration with two leading UK Universities to improve event management practices by using Artificial 
Intelligence (AI), Machine Learning (ML) and other advanced analytics techniques. These examples demonstrate 
not only the power of these technologies, but also that water companies can benefit from their adoption as they 
enable them to efficiently take a holistic, fully managed life-cycle of events approach. 
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are therefore also valuable as they enable the 
training of people capable of working at the 
interface of traditionally separate informatics, 
science and engineering disciplines and who 
understand both data science and the 
complexities of water challenges.  
 
This article presents three complementary 
examples of the research work carried out in 
collaboration with the University of Exeter and 
the University of Sheffield to improve event 
management practices. Specifically, the first 
example focusses on event detection, the 
second example focusses on approximate 
event location and the third example focusses 
on post event response planning. These 
examples show how United Utilities is pursuing 
a fully managed life-cycle of events by taking a 
holistic approach to addressing the challenge 
of optimising the decision-making process of 
different teams in order to achieve the required 
level of service and the best utilisation of the 
assets at a minimum cost with an effective 
response time to all events. Indeed, a compre-
hensive, efficient and effective event 
management solution is key to such an 
optimisation challenge, which encompasses 
cross-organizational functions and works 
across different management levels. 
 
Event detection 
The first objective of a comprehensive event 
management solution is to provide near real-
time, actionable event alerts such as, pipe 
bursts/leaks, pressure/flow anomalies, and 
sensor faults / telemetry problems. This 
enables water companies to become aware of 
all the events occurring in a timely fashion and 
better manage the situation, armed with 
valuable insights about these events (e.g. type, 
size, indication of their timing, etc.). This 
section briefly presents an AI-based system[4,5] 
that not only detects pipe bursts/leaks but also 
equipment and other failures in WDSs. This 
section additionally provides a couple of 
examples of the significant impact that this 
system has had on United Utilities’ ability to 
deal with events in its WDS.  
 
The detection system briefly presented here 
makes synergistic use of several self-learning 
AI techniques and statistical data analysis 
tools. In the detection system the automatic 
processing of pressure and flow data 
communicated by the DMA sensors in near 
real-time starts with using advanced 
techniques for ensuring that the data is 
cleansed and erroneous/missing data 
removed and/or infilled (e.g. wavelets are used 
for removing noise from the measured flow 
and especially pressure signals). The 

detection system then makes use of the pre-
processed data to forecast the signal values in 
the near future using Artificial Neural Networks 
(ANNs). These values are then compared with 
incoming observations to collect different 
pieces of evidence about the failure event 
taking place. Statistical Process Control (SPC) 
techniques are also used for the analysis of the 
failure event -induced pressure/flow variations 
and gather additional pieces of evidence about 
the event occurring. The evidence collected 
this way is then processed using Bayesian 
Networks (BNs). BNs enable reasoning under 
uncertainty and simultaneously (synergisti-
cally) analysing multiple event occurrence 
evidence and multiple pressure/flow signals at 
the DMA level to estimate the likelihood of the 
event occurrence and raise corresponding 
detection alarms. The system also offers the 
capability to effectively learn from historical 
events to improve the detection of the future 
ones[5] (albeit it does not need information 
about historical events to start making reliable 
event detections when first applied to a 
DMA/WDS). It does not make use of a 
hydraulic or any other simulation model of the 
analysed WDS - i.e. it works solely by 
extracting useful information from sensor 
signals where bursts and other events leave 
their imprints (i.e. deviations from normal 
pressure and flows signals). This fact makes 
the detection system robust and scalable as it 
enables data to be processed in near real-time 
(i.e. within a 15 minute time window). 
 
Elements of the aforementioned detection 
system, developed initially as part of a 
research at the University of Exeter, have been 
built into United Utilities’ new Event 
Recognition in the Water Network (ERWAN) 
system. The ERWAN system’s development 
carried out in United Utilities also benefitted by 
the following additional technology enhance-
ments: a) development of a new methodology 
to add the capability to handle alarms from 
cascading DMAs[12], b) development of a new 
methodology to add the capability to rank 
alarms (based on a risk framework that 
accounts for factors such as mains length, 
material, number of industrial and key 
customers in a particular area of the water 
network), and c) development of a new 
methodology to add the capability to 
determine the likely root cause of an event. 
These enhancements have provided United 
Utilities additional, helpful event management 
tools. The ERWAN system has been used 
operationally companywide since 2015. It 
processes data from over 7,500 pressure and 
flow sensors every 15 minutes and detects 
events such as pipe bursts and related leaks in 
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a timely and reliable manner - i.e. shortly after 
their occurrence and with high true and low 
false alarm rates. 
 
Compared to previous company practice the 
ERWAN system has enabled United Utilities to 
detect pipe bursts and other failure events 
much more quickly. As an example, on the 31st 
of May 2016 there was a catastrophic failure of 
a 450 mm diameter main in the town of 
Formby which affected 10,600 properties. 
Using the ERWAN system the burst was ident-
ified more than three hours before the 
customers reported any disruption. This early 
event detection ensured planned responses 
were therefore deployed quicker. This also 
meant that customers were disrupted less as 
Alternative Supply Vehicles (ASVs – i.e. 
emergency tankers injecting water into the 
network) were deployed while the main was 
repaired. United Utilities estimates that this 
proactive response reduced interruptions to 
supply by 42%. Additionally, the ERWAN 
system has also demonstrated the potential to 
proactively prevent failures in some cases, e.g. 
via timely detection of faulty Pressure 
Reducing Valves (PRVs) often resulting in a 
follow-on pipe burst event(s). As an example of 
this situation, Figure 1 shows the ERWAN alert 
that was generated on the 9th of September 
2019, indicating that the pressure had 
increased in a DMA. This alert prompted the 
Early Detection Team (EDT) to investigate the 
issue and immediately schedule a job for a 
minor PRV service as the automatically ident-
ified root cause suggested a fault of that asset. 
During that site visit, it was identified that the 
PRV had failed ‘open’. Further work was then 
scheduled for a network resource to carry out 
a major service on the asset. Proactively ident-
ifying that issue with the PRV may have 
prevented a pipe burst in the relevant 
pressure-controlled DMAs (especially 
considering the observed significant pressure 
increase). The potential impact of such a 
failure would have been in excess of £900k in 
Customer supply Minutes Lost (CML) penalty 
cost alone, with the ASV fleet and resource 
utilisation costs and the disruption to the 
customers adding to that. 
 
The use of the ERWAN system has resulted in 
major operational cost savings (due to the 
reduced number of pipe bursts/leaks needed 
to detect and repair) to date and contributed to 
United Utilities’ CML, leakage and Customer 
Measure of Experience (C-Mex) performance 
(due to the avoidance or reduction in issues 
such as poor water pressure, no water, or poor 
water quality - therefore improving the service 
to over 7 million people and 200,000 business 

customers). It has also reduced asset 
maintenance costs by informing the need for 
maintenance prior to asset failure, and 
avoiding unneeded maintenance visits. 
Operational costs are also reduced as it 
enables problems to be dealt with proactively 
which is much less expensive than dealing 
with asset and service failures.  
 
Furthermore, the success of the ERWAN 
system has been important to influencing 
change in the ways of working (e.g. making 
better use of data analytics in the daily 
operation) and the establishment of the EDT in 
United Utilities’ Integrated Control Centre 
(ICC). The ICC is the hub of United Utilities’ 
operations where a team of highly trained 
system operators watch over the network 24/7. 
They use the information and insight provided 
by ERWAN and other monitoring systems to 
perform complex event diagnosis and, by 
making intelligent decisions in the centre, 
prevent abortive work for field staff and resolve 
disruption for customers faster. Increasingly, 
through control and automation, the ICC can 
intervene remotely to resolve issues faster and 
more efficiently. This hub is one of the corner-
stones of United Utilities’ AMP7 (Asset 
Management Plan five-year time period used 
in the English and Welsh water industry) 
Systems Thinking strategy and will catalyse 
future benefits. 
 
Event location 
After it is established that an event has 
occurred in a DMA by using automated 
systems such ERWAN, the next challenge in 
event management, especially when pipe 
burst/leak events are considered, is to 
determine the exact event location. Typically, 
network resources are deployed to DMAs 
containing new burst/leak events so that they 
can be precisely located (or “pinpointed”) and 

then repaired. There are many cases, such as 
when the size of a burst/leak event is small, 
where their location is not readily apparent. In 
these cases, resource intensive pinpointing 
activities such as acoustic surveys are carried 
out so that each of the pipes in a DMA can be 
examined to find the exact burst/leak location. 
It can take several days to examine all the 
pipes in a DMA as, in United Utilities for 
example, the typical total length of mains is 
about 13 km. This represents a significant 
investment of labour, equipment and 
operational expenditure when this approach is 
used across an entire WDS. In this scenario, a 
methodology that enables narrowing down the 
area that must be searched within a DMA (i.e. 
approximately locate the event) would be 
greatly beneficial for water companies. 
 
This section briefly presents the details of a 
novel methodological framework[9] for the 
approximate burst/leak location that is being 
developed as part of a collaboration with the 
University of Sheffield and one example of its 
application to a burst event simulated by the 
controlled opening of a fire hydrant in a United 
Utilities’ DMA. This framework assumes that an 
increased number of pressure sensors can be 
deployed in the DMA being analysed. Due to 
the financial constraints placed on water 
companies and the costs of the additional 
instrumentation required, however, it is 
desirable to limit the number of additional 
instruments to be deployed. Therefore, the 
methodological framework being developed 
also encompasses a method for selecting the 
optimal number and location of sensors to be 
deployed in a particular DMA to achieve a 
desired level of event location performance. 
This tight coupling between optimal sensor 
placement and approximate burst/leak 
location is of particular importance as an 
optimal sensor placement strategy depends 
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Figure 1. ERWAN system alert indicating a sudden pressure increase, likely due to a faulty pressure 
reducing valve.
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on the method that is used to locate the 
potential bursts/leaks and the efficiency of the 
burst/leak location depends on the sensor 
placement. 
 
The novel methodological framework is based 
upon a Spatially Constrained version of the 
Inverse Distance Weighted (SC-IDW) 
geospatial interpolation technique[13]. 
Generally speaking, geostatistical techniques 
have the potential to limit the number of instru-
ments which are deployed in a DMA as they 
can estimate the values of parameters at 
locations which are not measured based on 
the measurements from nearby sensors and, 
hence, to enable higher burst/leak location 
performance to be achieved for a given 
number of sensors[14]. Bearing this in mind, the 
use of SC-IDW enables the overcoming of the 
obvious limitation of traditional geostatistical 
techniques of using the Euclidean distance 
instead of the pipe length between the 
estimation locations and the instrument 
locations (i.e. not accounting for the actual 
network layout of a DMA). The framework 
makes also use of a hydraulic model and of 
the GALAXY multi-objective evolutionary 
algorithm[15] (i.e. a nature inspired AI method-
ology) to identify a Pareto front of optimal 
sensor configurations which simultaneously 
minimise the required number of pressure 
sensors (cost) and the average size of the 
areas to be searched (best level of burst/leak 
approximate location accuracy). 
 
The first step for solving the optimal sensor 
placement problem involves hydraulic 
modelling of bursts/leaks at all nodes and 
building a sensitivity matrix. The valid range of 
burst/leak event sizes to be modelled is deter-
mined for each DMA by considering the 
accuracy of the pressure instruments being 
used (to find the smallest burst/leak event 
sizes) and a maximum allowable increase in 
flow (to determine the largest burst/leak event 
sizes for each burst/leak event location). The 
aforementioned sensitivity matrix is based on 
the changes in pressure for each potential 
sensor location, which are calculated by 
comparing the pressure in the hydraulic model 
with no burst/leak modelled with the pressure 
in the model with each burst/leak modelled. 
Additional computations are then conducted 
aimed at reducing the search space of the 
optimisation (i.e. grouping together events that 
cannot be distinguished given the pressure 
instruments’ accuracy). Following this, the 
values of the pressure changes in the 
‘grouped’ sensitivity matrix are used for 
building various interpolation surfaces during 
the optimisation step, which aims at 

maximising (using an objective function also 
based on the SC-IDW interpolation technique 
and a threshold that defines the burst/leak 
search area on an interpolation surface) the 
location performance of each configuration of 
sensors for every burst/leak being modelled. 
After determining the optimal sensors configur-
ation by looking at the results of the 
optimisation step (and after deploying the 
pressure sensors in the field), the SC-IDW 
interpolation technique can be used 
operationally to calculate the approximate 
location of an actual burst/leak occurring in a 
DMA (once a burst/leak has been detected or 
is suspected) based on the actual changes 
(from ‘normal’) in pressures measured at the 
sensor locations. The calculated search area is 
then highlighted on a map of the DMA, which 
is passed to network resources to aid with 
pinpointing the burst/leak event.  
 
Figure 2 shows an example of such a map 
generated for the approximate location of a 
burst event simulated on the 14th of February 
2020 by the controlled opening of a fire 
hydrant (so that the exact size and start time 
are known) in one of United Utilities’ DMAs. 
This DMA contains approximately 2,100 
properties and 25 km of mains. A PRV controls 
the pressure in one section of the DMA 
because of the highly variable elevation in the 
area. The fire hydrant opening was adjusted to 
achieve a flow rate of 0.6 l/s which is equiv-
alent to approximately 6% of the average flow 
rate into the DMA calculated over a normal 
week. In Figure 2, the locations of the three 
optimally placed pressure sensors (deter-
mined by considering a total of 934 potential 

burst/leak event scenarios across 7 burst/leak 
event sizes) are shown as blue dots. The 
location of the opened fire hydrant is shown as 
a green dot. The pipes and nodes within the 
calculated search area are coloured in red. It 
can be noticed that this event was successfully 
approximately located within a search area 
that is less than a quarter of the total length of 
mains in the DMA. This example demonstrates 
the potential of the methodological framework 
being developed to allow successful 
approximate location of relatively small 
burst/leak events by using only a few 
additional optimally placed pressure sensors. 
This said, it is expected that the search areas 
can be further reduced by deploying more 
sensors. Nevertheless, by reducing the search 
area to a sub-region within a DMA, significant 
reductions in the time taken to pinpoint 
burst/leak events can be achieved (e.g. by ¾ 
as exemplified here). 
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Figure 2. Example of a successful approximate 
burst location.

Figure 3. New response methodology’s flowchart.
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Post event response  
After successful detection and location of 
events, the next considerable challenge for 
water companies during the event 
management process is the identification of a 
suitable strategy to respond to those events in 
near real-time. This section briefly presents the 
details of a novel methodology[11] for the 
response to water network events that is being 
developed as part of a collaboration with the 
University of Exeter and the initial, promising 
results obtained from its application on a semi-
real case study. 
 
The novel event response methodology 
presented here aims at improving United 
Utilities’ current event response practice by 
supporting/guiding the ICC operators in the 
identification of low end-impact (i.e. the total 
impact after implementation of the response 
solution) and low cost response solutions. It 
consists of the following main steps: (1) robust 
initial event impact assessment (over a set 
horizon), (2) identification of a suitable isolation 
plan, (3) human-based, but computer-aided, 
identification of a response solution (i.e. 
manual solutions proposed by an operator), 
(4) automatic identification of a response 
solution generated using Genetic Algorithms 
(GAs) optimisation, and (5) selection of the 
response solution to be implemented in the 
field. Note that these five steps do not need to 
be necessarily carried out in a sequential 
manner. The following three-stage routine is 
performed in each of the aforementioned step: 
Stage 1) involves obtaining various operators’ 
inputs (e.g. impact horizon, earliest time the 
repair can be initiated, etc.), Stage 2) involves 
carrying out hydraulic simulations to assess 
the end-impact and cost of each solution, and 
Stage 3) involves visualising the calculated 
end-impact and computing the cost of each 
solution. The new response methodology’s 
steps are shown as a flowchart in Figure 3. 
 
The above event response methodology is 
implemented in the Interactive Response 
Planning Tool (IRPT), which has been 
developed in Matlab. In the IRPT, the hydraulic 
simulations are carried out by using 
EPANET2[16] and pressure-driven network 
modelling based on the methodology 
developed by Paez et al.[17]. The Non-
Dominated Sorting Genetic Algorithm II or 
NSGA II[18] (i.e. another AI tool/technique) is 
used to solve the multi-objective optimisation 
problem (albeit work has also been done to 
develop and use a new heuristic method that 
offers the advantage of significantly reducing 
the time taken to find near-optimal response 
solutions). The IRPT also links to the Quantum 

Geographic Information System (QGIS) 
software to visualise the spatial distribution of 
end-impact on a suitable map of the analysed 
WDS.  
 
The IRPT facilitates an operator’s decision-
making by considering/providing: (i) structured 
yet flexible approach that supports and guides 
the operator throughout the entire response 
process, whilst allowing the operator to have a 
final say, (ii) novel interaction with the operator 
in near real-time via the simple IRPT graphical 
user interface (e.g. allowing operators to 
propose different ‘what-if’ scenarios without 
being hydraulic experts), (iii) provision of 
automatically generated advices (e.g. optimal 
response solutions and assessed end-
impacts/costs), (iv) improved impact 
assessment using realistic (i.e. based on real-
life metrics used by water utilities) impact 
indicators that cover different aspects of the 
event, which are consistently calculated for 
every considered response intervention, (v) 
capability to select multiple common 
operational intervention types such as 
rezoning and water injection (based on 
operational costs, availability of different types 
of interventions, etc.), and (vi) capability to 
easily compare different response solutions by 
visualising, inter alia, the impact coverage 
(using maps) and cost of different solutions. As 
a result, low end-impact and cost solutions 
can be effectively identified. This has multiple 
benefits for a water company. The most 
important benefit is reducing the impact on the 
customers, which can be costly in many ways 
(financially but also in terms of reputation, 
etc.). Other benefits related to costs include: a) 
operational savings in the long-term as many 
events may occur each year - although the 
cost of a single response solution may be 
small (e.g. hundreds of pounds), and b) less 
time spent on site for opening valves or 
injecting water - this could benefit water 
companies in terms of more efficient 
scheduling of the network resources’ activities. 
 
The IRPT is illustrated here on a semi-real case 
study to demonstrate the benefit of a response 

solution identified through interaction with the 
IRPT (hereafter referred to as the ‘new method-
ology response’) by comparing it to a 
response solution based on typical water 
companies’ current practice (hereafter referred 
to as the ‘current practice response’). Note that 
the case study under scrutiny is referred to 
here as “semi-real” because, despite being 
based on a real system and event, several 
simplifications were made with regard to the 
actual response actions taken by the ICC 
operator in real-life. This is primarily because 
the IRPT is still in development and did not yet 
offer the capability of exactly replicating those 
real-life response actions. Bearing this in mind, 
note that the used ‘current practice response’ 
label should also be construed accordingly. 
The considered event was a shutdown of a 
Water Treatment Work (WTW) (serving multiple 
DMAs and approximately 100,000 customers) 
due to a burst on a main within the WTW. The 
shutdown resulted in intermittent supply and 
low pressure to some customers. The WTW 
remained shut until the quality of the water 
leaving the WTW could be assured to meet the 
required standards. United Utilities mobilised 
ASVs to the area, which injected water at 
various points in the affected area and at 
different times during the incident.  
 
Furthermore, United Utilities implemented a 
number of network changes (i.e. rezoning) in 
order to minimize customer end-impact. 
Bottled water was delivered directly to priority 
services and sensitive customers. The repair 
was completed 24 hours after the shutdown. 
Table 1 summarises the result obtained on this 
case study in terms of the total end-impact and 
the cost calculated by the IRPT for the ‘new 
methodology response’, ‘current practice 
response’ and ‘no response’ (i.e. initial 
condition of the system after the event) 
scenarios. For each of those scenarios, Table 1 
also presents the calculated values of the 
various impact indicators (which make up the 
total end-impact), namely: a) CML, b) Average 
Minutes Low Pressure (AMLP), c) 
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                                          CML             AMLP           UW           DRI         Cost        Total end- 
                                   (mins/cust)   (mins/cust)       (m3)           (-)             (£)        impact (%) 
                                                                                                                                                  
No response                       4                   3.6              3330           14               0                11.1 
 
Current practice  
response                            2.1                   2               1825          273           894               6.5 
 
New methodology  
response                            1.6                   2               1475           92             55                 5 

Table 1. Total end-impact, cost and values of the considered impact indicators for the ‘no response’, 
‘current practice response’, and ‘new methodology response’.

continued on page 119
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In subtropical eutrophic coastal waters 
around Hong Kong and the region, the 
explosive growth of phytoplankton (algal 
blooms) is often observed. These blooms 
can lead to water discoloration (e.g. red 
tides), severe dissolved oxygen depletion, 
and shellfish poisoning – resulting in beach 
closures and massive fish kills [1]. For 
example, in April 1998, a devastating red tide 
resulted in the worst fish kill in Hong Kong’s 
history - over 80% (3,400 tonnes) of fish 
stocks in Hong Kong were wiped out, with an 
estimated loss of over USD 40 million. 
Despite significant upgrades of the water 
pollution control infrastructure over the past 
two decades, massive harmful algal blooms 
(HAB) still recur and present formidable 
challenges to fisheries management (Figure 
1). Worldwide, HAB is an important problem 
related to the global challenges of water and 
food security. The onset of a HAB is also 
notoriously difficult to predict.  
 
Traditional approaches of red tide monitoring 
and fisheries management rely on field 
sampling and laboratory analysis of chloro-
phyll-a concentration (Chl-a) - an indicator of 
algal biomass - and manual cell counting and 
species identification, which are resources 
intensive and time consuming. With the 
increasing availability of real time water 
quality sensors, the development of HAB 
early warning systems has become a 
practical possibility. In this article, an 
overview of recent research on the use of 
remotely sensed data in a HAB early warning 
system is described. Two aspects of the 
system are presented: (i) daily forecast of 
algal bloom risk based on prediction of 
vertical density gradients using in-situ real 
time (10 min sampling period) water quality 

data; and (ii) use of machine learning to 
automatically detect target HAB species from 
images (30,000 numbers/hour) monitored by 
a submerged Imaging Flow Cytometer at a 
marine fish farm. Further details can be found 
in the cited references.  

Real time forecasting of algal blooms 
using real time water quality data  
The occurrence of HABs in eutrophic coastal 
waters depends on the complex interaction of 
physical and biological factors that include: 
nutrient supply (e.g. inorganic nitrogen and 
phosphorus), algal growth rate, hydro-meteo-
rological conditions (e.g. solar radiation, 

REAL TIME FORECASTING AND AUTOMATIC 
SPECIES CLASSIFICATION OF HARMFUL ALGAL 
BLOOMS (HAB) FOR FISHERIES MANAGEMENT  
BY JOSEPH H. W. LEE, J. H. GUO, TREE S. N. CHAN, DAVID K. W. CHOI, W. P. WANG AND  
KENNETH M. Y. LEUNG

Fish is an important source of animal protein in the diet of the Asian population and 60 percent of this is from 
aquaculture. Asia contributes about 90 per cent of the global aquaculture production and has become the most 
important supplier to the global seafood trade [7]. It is expected that population growth and economic development 
will lead to increasing fish consumption and global demand for food fish. In Hong Kong, marine fish culture 
(mariculture) has been a major supplier of high value fish including groupers, snappers and sea breams. Local 
mariculture is carried out in cages suspended by floating fish farm rafts in designated fish culture zones (FCZ) which 
are typically weakly-flushed tidal inlets. 

Figure 1. Typical marine fish culture zone located in a coastal tidal inlet and examples of coastal algal 
blooms and fish kills. 
(a) Examples of coastal algal blooms.                                                          

(b) Typical marine fish culture zone and massive fish kill in April 1998.
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Recently we have developed a daily algal 
bloom risk forecast system based on: (i) a 
vertical stability theory; and (ii) a data-driven 
artificial neural network (ANN) model that 
assimilates high frequency data to predict sea 
surface temperature (SST) and vertical density 
stratification on a daily basis. The model does 
not rely on past chlorophyll measurements 
and has been validated against extensive field 
data.  
 
Field observations show that a stable water 
column is necessary for an algal bloom to 
form. In weakly flushed tidal inlets, it can be 
shown that the vertical turbulent diffusivity, E, 
must be less than a turbulence threshold 
defined by the net algal growth rate and the 
euphotic depth – with E<Ec=4μl2/π2, where 
μ= net algal growth rate and l=euphotic 
depth (proportional to Secchi depth) [13], [14]. If 
the vertical mixing exceeds the critical turbu-
lence threshold, too much algae will be mixed 
out of the photic zone into the non-productive 
lower layer, and a bloom cannot be formed. 
The vertical stability criterion has been verified 
against 191 algal blooms over the past three 
decades [8].  
 
In addition to the water column stability 
condition, a nutrient threshold, i.e. total 
inorganic nitrogen > 120 μg/L and orthophos-
phate > 18 μg/L should be met. If both the 
stability and nutrient criteria are fulfilled, there 
is no restriction for the algal population to 
grow in either physical or biological aspects 
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Figure 2. Conceptual framework for a harmful algal bloom (HAB) early warning system for prognostic 
forecast of algal bloom. 

Figure 3. Daily algal bloom risk forecast framework as a function of 
hydro-meteorological and water quality data expressed in terms of a 
hydrodynamic stability risk factor and nutrient availability for the Yim 
Tin Tsai (YTT) Fish Culture Zone, Tolo Harbour, Hong Kong. 

Figure 4. Artificial Neural Network (ANN) for daily prediction of sea surface 
temperature (SST) and vertical temperature difference (ΔTz); the uppermost 
neuron in the input layer shows the most current real time measurement (when 
data is available). Time averages over several days indicated by over bar.

rainfall, air and water temperature, wind), tidal 
currents, water column transparency (light 
extinction) and turbulent mixing which is 
strongly affected by density stratification. The 
impacts of HAB on water quality also depend 
on algal and dissolved oxygen dynamics, and 
nutrient recycling. An early warning system of 
HAB occurrence (even with a lead time of 1-2 
days) can benefit fisheries management and 
emergency response greatly.  
Building on field observations of algal blooms, 
the use of data-driven methods such as 

Artificial Neural Networks (ANN) to predict 
coastal algal blooms has been attempted [2], [9]. 
However, the measurement frequency (typically 
monthly or biweekly) of most water quality 
monitoring protocols was insufficient to capture 
the highly dynamic variation of hydrodynamics 
and water quality, and in particular algal 
biomass. In recent years, HAB early warning 
systems have increasingly been reported [5], [6], 

[10]. Nevertheless, the development of field 
validated HAB forecast systems remains a 
formidable challenge.  
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and hence a bloom is likely to occur. Based 
on long term data, the vertical stability 
criterion and the nutrient threshold can be 
cast into probabilistic or risk terms and 
combined to give a prognostic forecast of 
algal bloom risk (high, medium, low) levels. 
Figure 2 shows a conceptual framework of a 
possible data assimilation system based on 
the integration of 3D and data-driven models, 
and field data.   
 
The availability of high-frequency real-time 
temperature, salinity, dissolved oxygen (DO) 
and chlorophyll fluorescence data (at 10-
minute intervals) opens the possibility of 
forecasting algal bloom risks on daily basis. 
Real-time telemetry data monitoring stations 
have now been set up in 12 key fish culture 
zones in Hong Kong, with spatial distances 
ranging from 2.5 to 20 km. Figure 3 shows the 
flow chart of the implementation of the 
forecasting framework for the Yim Tin Tsai 
marine fish culture zone in Tolo Harbour, Hong 
Kong. The vertical temperature and salinity 
gradients (and hence the density gradient) 
can be forecast by assimilation of data and/or 
model predictions using an Artificial Neural 
Network (ANN). Figure 4 shows an ANN 
model with three layers (input, hidden and 
output layers) for daily forecast of SST and 
vertical temperature difference using inputs of 
daily averaged real-time data in the previous 
day together with past hydro-meteorological 
data. A similar network can be obtained for 

the vertical salinity difference. The tidally and 
wind-induced vertical diffusivity E can then be 
estimated (based on 3D hydrodynamic 
models and predicted density stratification) 
and compared with the critical turbulence 
criterion Ec to give a stability risk factor R. By 
analysing all historical algal bloom events, the 
likelihood of a bloom occurrence based on 
hydrodynamic stability can be cast in terms of 
a probabilistic risk, P(B|R). Similarly, the 
likelihood of a bloom based on nutrient avail-

ability (i.e. concentration of total inorganic 
nitrogen and orthophosphate) can be 
obtained as P(B|N) and P(B|P). The algal 
bloom risk for the next day can then be 
obtained using the multiplication rule and the 
Liebig’s Law of the Minimum: P(B) = P(B|R). 

min[P(B|N),P(B|N)].[8]  

Figure 5 and Figure 6 show respectively a 
daily forecast of vertical temperature and 
salinity differential (at two levels). Based on 

Figure 5. Example daily forecast of vertical temperature differential ΔTz 
using hybrid ANN model, compared with daily-averaged real-time data and 
naive prediction given by data on the previous day. Note that the ANN 
daily forecast is continuous while naive prediction is limited by gaps of 
real-time data.

Figure 6. Example daily forecast of vertical salinity differential ΔSz using 
hybrid ANN model, compared with daily-averaged real-time data and naive 
prediction given by data on the previous day. Note the ANN daily forecast 
is continuous while naive prediction is limited by gaps of real-time data.

Figure 7. Example 
daily forecast of 
vertical turbulent 
diffusivity and bloom 
risk compared with 
measured surface 
and bottom 
dissolved oxygen 
and chlorophyll 
fluorescence for a 
dinoflagellate bloom 
observed at YTT FCZ 
in Mar-Apr 2016 
(causative species: 
Akashiwo 
sanguinea; cell 
count:1,000-10,000 
cells/mL).



the forecast, the vertical density gradient at 
the site can then be determined. The ANN 
model is a hybrid model that is capable of 
making short term forecasts even in the 
absence of in-situ data (e.g. due to data 
logger failure, system malfunctioning or 
equipment maintenance). The system has 

been validated against four years of field data, 
with an accuracy comparable to the field 
performance of commercially available 
systems (0.51 ̊ C and 0.58 psu for the 
temperature and salinity, respectively). It 
should be noted that the model is clearly 
superior to the naïve prediction (prediction of 

today’s conditions being same as yesterday). 
In practical deployment, the presence of real-
time data gaps is the norm rather than the 
exception and it is essential to have a model 
that can perform short-term forecasts even in 
the absence of in-situ real-time data.  
 
Figure 7 shows the variation of the estimated 
vertical diffusivity, algal bloom risk, DO and 
chlorophyll fluorescence in March-April 2016. 
It is seen that with the decrease in vertical 
diffusivity towards the end of March 2016, the 
bloom risk becomes steadily high (P(B)>0.8) 
around 26 March, and the stable water 
column resulted in an algal bloom which was 
sighted on 29 March, 2016. The onset of the 
dinoflagellate bloom was indicated by the 
sharp rise in chlorophyll fluorescence and was 
confirmed by direct onsite measurements 
which revealed the causative species to be 
Akashiwo sanguinea with cell counts of 1,000-
10,000 counts/mL and chlorophyll-a > 10 
μg/L. The photosynthetic production in the 
surface layer resulted in DO supersaturation 
(up to 16 mg/L) and a marked DO differential 
between surface and bottom of 4-10 mg/L. 
The bottom DO was depleted to a low level of 
around 4 mg/L during the bloom which 
subsided after about two weeks. The algal 
and DO dynamics is also associated with 
nitrogen and phosphorus uptake [8].  
 
The vertical turbulence at the site is 
dominated by wind-induced mixing prior to 
the bloom which was coincident with a period 
of low wind (< 2 m/s), neap tide, high water 
transparency (large Secchi depth), and 
increasing temperature and vertical 
temperature (salinity) differentials of 4 ̊ C  
(2 psu) respectively. The bloom occurrence is 
clearly correlated with the predicted algal 
bloom risks. As a bloom will occur if nutrients 
are sufficient, it is found that the bloom risk 
due to stability risk is often a good indicator of 
a bloom.  
 

112 hydrolink  number 4/2020

a b

Figure 10. Automated classification of 14 target harmful algal bloom (HAB) species using machine 
learning. (a) Examples of IFCB images for 14 target HAB species. (b) Confusion matrix of classifi-
cation result of test images. Numbers in blue boxes along the diagonal line indicates the correctly 
classified images. Class No. 15 refer to all species other than the 14 targets in (a).

Figure 8. HAB species monitoring at fish culture zone using Imaging Flow CytoBot (IFCB). (a) Field deployment of IFCB at fish raft. (b) IFCB 
(c) Hydrodynamic focusing.

Artificial Intelligence

a b c

Figure 9. Classification using a random forest classifier (ensemble of decision trees trained with 
bootstrap sampling and random feature subspace methods). Extracted features of input image are 
presented to classifier and each tree makes a prediction independently. The number of instances that 
each class i being predicted are counted (Ci) and a percentage score is obtained (Pi). The final 
decision is the class with the maximum score (majority vote).
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Automated classification of high-
frequency microalgae images 
High-frequency microalgae image data can be 
acquired in-situ through an imaging 
FlowCytobot (IFCB) that enables the identifi-
cation of HAB species and estimation of cell 
abundance in real time. The IFCB is an 
automated, submersible equipment that can 
be continuously deployed underwater for 
months [11]. Designed using the principle of 
hydrodynamic focusing and flow cytometry, the 
IFCB is able to capture up to 30,000 high-resol-
ution images (3.4 μm/pixel) in an hour (three 5 
mL samples). The observation range is from 10 
μm to 150 μm, which covers most of the 
common algal bloom species in Hong Kong. 
Analysis of image data at such a high sampling 
rate requires automated taxonomic classifi-
cation using machine learning techniques [12]. 
 
Since March 2019 we have been deploying an 
IFCB at the Yim Tin Tsai (YTT) Fish Culture 
Zone in Tolo Harbour, Hong Kong, to collect 
algal image data and monitor algal species. 
The system is equipped with a 4G cellular 
network connection to facilitate remote 
equipment control and data transfer (Figure 8). 
To collect training samples for development of 
auto-classifier, we have performed manual 
annotation of over 330,000 images collected 
by IFCB during the deployment in YTT. These 
images cover 40 categories from species to 
group levels, including diatoms and dinoflagel-
lates. Automated classification approach of 
IFCB images has been developed using both 
(i) random forest algorithm with robust image 
processing and feature selection techniques; 
and (ii) state-of-the-art transfer learning with a 
pre-trained Convolution Neural Network (CNN) 
(i.e. GoogLeNet). The random forest (RF) [3]  
is an efficient machine learning approach 
predicting the label of an unknown image 
based on extracted image features. As illus-
trated in Figure 9, an ensemble of decision 
trees trained with bootstrap sampling and 
feature bagging make predictions indepen-
dently and the final decision is based on 
majority votes. Fourteen commonly observed 
HAB species of particular interest are selected 
as the training targets (Figure 10(a)). Both RF 
and CNN approaches reach classification 
accuracies of over 80% for all target species. 
Figure 10(b) shows the confusion matrix of 
classification results (using the RF approach) 
of 1,000 test images for each species. The 
columns of the confusion matrix represent the 
number of predictions in each class while its 
rows represent the actual observations in each 
class. Testing against unlabelled IFCB samples 
shows that our developed classification 
approach is very efficient with near real-time 

cell abundance estimation of prevailing 
species - results can be obtained within 1-7 
minutes after a sample is acquired. This 
opens the possibility of adapting IFCB into a 
real-time HAB detection and early warning 
system. 
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Digital sensors and communication technol-
ogies have rapidly gained momentum with the 
transformation of our urban centers into smart 
cities. New digital products and data commu-
nications have revolutionized several urban 
services and enabled new economic models, 
as demonstrated, for instance, by the gig 
economy subverting the consolidated 
paradigm of the highly regulated taxi industry. 
Comparably, technological development 
coupled with existing demographic, 
economic, and climate challenges is giving 
traction to the utility sector to transition to the 
digital age. Both smart water metering and the 
associated data processing techniques, 
including advanced analytics and Artificial 

Intelligence (AI), are often mentioned as key 
transformative digital technologies of the utility 
sector [1]. However, we acknowledge that the 
uptake of digital technologies has been more 
gradual in the water sector, compared, for 
instance, to the energy sector. Smart water 
meter development and experimental trials 
started more than 20 years ago. Yet, large-
scale smart water meter rollouts, as well as 
commercial applications of AI technologies 
coupled with smart water meters, are still 
limited.  
 
Here, we analyze the role of smart water 
metering and AI in water business applica-
tions, and ultimately inquire: are they 

disruptive or incremental innovations for the 
digital transformation of water businesses? In 
this paper, we first investigate and provide 
examples on how smart meters and AI have 
been so far applied to support utility opera-
tions and customer engagement. We then 
formulate motivations and identify the benefits 
for using smart water meters in customer 
applications. Finally, we propose a pathway to 
best practice for water businesses to assess 
the maturity stage of their metering techno-
logies and their capacity to innovate. 
 
Advent and future of smart water 
meters 
Smart water metering technologies have been 
developed since the late 90s, allowing for 
gathering of water consumption data with high 
spatial and temporal resolution. Pioneering 
studies to advance smart meter technologies 
and run smart meter trials emerged primarily in 
Australia and the United States, fostered by 
prolonged drought conditions requiring 
campaigns and incentives to promote water 
conservation [2]. As reported in a recent review 
paper on the benefits and challenges of using 
smart meters for residential water demand 
modelling and management [3], different smart 
water meter technologies have been 
developed since the first prototypes. Along 
with their technological development, several 
modelling applications have been 
implemented, closing the loop between water 
consumption data gathering and water 
demand management. Smart water meters 
have been used to promote short-term water 
conservation, simply by enabling water 
consumers to gain more information and 
control over their water consumption and 
water bill. Moreover, the usage of smart meters 
to retrieve end use level information, 
characterize water consumption profiles of 
individual households, and monitor changes in 

SMART WATER METERING AND AI FOR 
UTILITY OPERATIONS AND CUSTOMER 
ENGAGEMENT: DISRUPTION OR 
INCREMENTAL INNOVATION? 
BY ANDREA COMINOLA, IAN MONKS AND RODNEY A. STEWART

Digital technologies are disrupting several economic sectors and creating new business opportunities. As part of 
this transformation, the utility sector is also becoming more digital. However, water businesses have been slow to 
change paradigm and so far adopted digital technologies with incremental steps, often acting reactively to water 
scarcity conditions. Technologies such as smart water metering and Artificial Intelligence now offer water businesses 
the opportunity to focus on customer centric solutions to reap both operational and customer satisfaction benefits. 

Figure 1. User interface of the SmartH2O platform with household consumption goal setting 
mechanisms [4].

Artificial Intelligence
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water consumption has fostered the 
development of tools to analyze the different 
water consumption behaviors of individual 
customers, obtain insights on water 
consumption and conservation drivers, and 
ultimately design customized water demand 
management programs. Interactive web 
portals and customer engagement tools have 
been implemented as part of new customized 
demand management programs to enable 
data visualization and facilitate the two-way 
communication between water consumers and 
utilities (see, for example, the user interface of 
the SmartH2O platform in Figure 1 [4]). 
 
Overall, several studies and applications 
analyzed the information content of smart 
meter data to characterize and model water 
consumers’ behaviors. However, uncertainties 
related to return of investments, meter battery 
life, data management, data privacy, product 
availability, and the long-term persistence of 
conservation behaviors have so far slowed a 
complete rollout of smart metering technol-
ogies [5]. This does not mean that smart water 
meters are not revolutionizing the water utility 
sector, but rather that their benefits and 
business cases for water utility applications are 
becoming evident only gradually. Water 
businesses are beginning to view smart water 
metering as a valuable technology for them to 
manage water demand, reduce infrastructure 
costs and streamline operational functions.  
 
The global smart water meter market is 
expected to grow in the next years, reaching a 
value of more than 10 billion USD before 
2030.1 As smart water meters are now being 
considered “smart” not only because of their 
possibility to enable remote data reading, but 
also because of the wealth of applications 
enabled by their associated informatics, water 
businesses are adapting and starting to 
acquire new skill sets for their employees. A 
best-practice smart metering system goes 
beyond automated meter reading and 
rudimentary presentation of hourly 
consumption data to provide deeper insights 
on customers’ usage of water and the 
associated costs [6]. IT, data science, and 
analytics skills are needed to fully exploit smart 
meters coupled with advanced analytics and 
AI to support utility operations and customer 
engagement.  
 
Smart water meters coupled with AI 
to support utility operations 
AI-based models have been used already to 
support utility operations independently from 

the development of smart meter data. Typical 
applications regard metamodeling of water 
distribution networks with black-box models, 
such as Artificial Neural Networks (ANNs), or 
urban water demand prediction. Accurate 
predictions of urban water demand are key 
inputs for designing optimal planning and 
management decisions. Several techniques 
have been used in the literature to identify and 
infer existing relationships between water 
demand and sets of heterogeneous variables 
representing potential water demand determi-
nants. Among these, the last two decades 
have seen a rapid increase in the usage of 
ANN-based methods. The success of such 
methods is primarily due to their flexibility of 
use, their ability to capture unknown nonlinear 
relationships between the predictand, i.e., 
water demand, and its potential determinants, 
and their predictive capabilities demonstrated 
by benchmarking with alternative methods.  
 
The availability of smart water meter data is 
facilitating the full potential of such data-driven 
methods, especially for applications related to 
high-resolution descriptive and predictive 
modelling of water demand. For instance, 
Bennet et al. [7] demonstrated the suitability of 
ANN-based methods to forecast water 
demand at the household level for a sample of 
over 200 households in Australia. Besides the 
usage of ANN to forecast water demand, other 
advanced Data Analytics (DA) techniques 
have been adopted to create value from smart 
meter information. Data-driven customer 
segmentation enabled by data dimensionality 
reduction, clustering techniques, and pattern 
analysis, has been developed to support 
water businesses obtaining detailed insights 
about the heterogeneous behaviors of their 
water consumers, along with their socio-
demographic drivers and, thus, to better 
design demand management interventions.   
 
Moreover, some studies primarily conducted 
in drought-prone areas exploited advanced 
analytics and smart meter data to monitor 
behavioral responses to demand 
management interventions, pinpointing water 
use shifts correlated with climate-related mass 
media and policy events, and identify rebound 
effects (e.g., [8]). 
 
Finally, pattern analysis of smart meter data 
allows better identification of anomalous 
consumption levels and more accurate billing. 
Utility operations can even take advantage of 
smart meter applications that are apparently 
only customer oriented. For instance, the 
practice of service recovery leading to 
compensatory refunds for concealed leaks 

continues to cost water businesses as do 
disputes over accounts and compensation 
paid for water damage from network leaks and 
bursts.2 This is particularly the case in 
complex, multi-metered properties such as 
high-rise and multi-unit communities where 
both individual unit and communal 
consumption occurs.  
 
All the above examples illustrate a range of 
operational cases where water businesses 
benefit from advanced analytics coupled with 
high-resolution smart meter data. As a result 
of such coupling, water businesses can better 
inform their water demand and supply 
strategies, and therefore increase the 
efficiency of their operations. However, 
differently from other sensors distributed in the 
water distribution network (e.g., pressure 
sensors), smart water meters inherently record 
information on individual customer behaviors 
and consumption habits. This provides water 
businesses with further opportunities to exploit 
such information to develop customer 
engagement programs that include water 
consumers in their efficiency loop more 
transparently and proactively. 
 
“Digital transformation in the water sector 

will be incremental, but successful citywide 
rollouts will accelerate change through 

pressuring adjoining water businesses to 
step-up and provide similar solutions and 

efficiencies.”  
 
Water businesses must engage 
customers better 
Digital disruption has already revolutionized 
many industries and allowed much better 
engagement with customers through web and 
phone interfaces. Travel, banking and finance, 
education, retail, food, etc. are all industries 
that have used digital technologies and DA to 
capture and push useful information to 
customers and engage them better. However, 
the urban water sector is still largely engaging 
with customers in the same way that they 
have over the last few decades, where a single 
water usage data point is collected by human 
meter readers on a quarterly basis and paper 
bills are distributed to customers with limited 
useful information. Water bills are paid and 
engagement rarely occurs, and when it does, 
it is often to discuss high water usage from 
months past that may be due to a range of 
reasons such as an unknown leak, high 
usage, meter or reader error, meter read 
estimations, to name a few. Sadly, due to the 
present limited information collected on water 

1) https://www.reportsanddata.com/report-detail/smart-water- 
meters-market

2) https://energycentral.com/c/iu/advances-artificial-intelligence-ai-
and-machine-learning-coupled-smart-water
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usage in most jurisdictions, it is not possible to 
meaningfully engage with customers on high 
water usage, hidden leakage events, 
incentives to reduce total and peak period 
demand, water affordability, custom 
conservation opportunities, etc. 
 
Given that water businesses are often 
government-owned water service provider 
monopolies having no direct competition that 
can provide a superior customer experience, 
they often forget about the customer and the 
opportunities and benefits of smart water 
metering for them. However, modern business 
survival is often premised on their ability to 
engage with customers and provide them a 
fulfilling experience with the product or service 
provided. A recent paper by Monks et al. [9], 
identified a total of 75 benefits from smart 
water metering. These benefits help either the 
water businesses, or customers, or are shared 
by both water business and customer. Many 
benefits had not previously been revealed in 
the literature. Of the reported benefits, 40 
benefits directly impact customers and of 
these, 18 are considered exclusively benefits 
to customers, such as the reduction in costs 
to customers due to leak alerting or the 
availability of customized product offers, and 
the other 22 as benefits delivering to both 
customer and the water business, such as 
reduced customer billing complaints, 
enhanced communications, and improved 
meter failure analytics (shared benefits). 
Monks et al. [10] examined the extent to which 
smart metering would improve levels of 
customer satisfaction.  
 
Most operational smart water metering 
benefits can be quantified in monetary terms. 
Customer Satisfaction (CS) related business 
impacts are more easily distinguished in a 
comparable privately operated telecommuni-
cations business due to lost customers when 
service is comparably lower than competitors. 
These impacts are not directly discernable in a 
monopoly water business market 
arrangement where customers are not lost 
due to poor CS. However, in such market 
arrangements, while customers and revenue 
may not be lost in the short term, customer 
trust and relationships are being eroded over 
time, and dissatisfaction may culminate in 
pricing caps, government penalties, political 
backlash, and a lack of community cooper-
ation. Not sufficiently engaging with 
customers and not providing them with a 
comparable level of service to other best-
practice water businesses presents an unpal-
atable long-term risk to contemporary water 
businesses.  
 

The advent of smart metering technologies 
and near real-time communications of high-
resolution data has enabled many leading 
water businesses to provide to their 
customers superior levels of service that are 
best practice. Deeper insights from smart 
meter collected big data, supplemented with 
other internal and external datasets, can only 
be realized through the development and 
deployment of advanced data mining 
methods and AI techniques. Figure 2 outlines 
a pathway to harness customer engagement 
and satisfaction benefits from smart metering. 
 

“Water businesses that can effectively 
harness digital technologies like smart 

meters and AI techniques, will reap both 
operational and customer satisfaction 

benefits” 
 
Artificial Intelligence to facilitate 
customer data interpretation 
Understanding and interpreting customer data 
requires the development of AI through a 
range of DA and Machine Learning (ML) 
techniques. Smart water meters are now 
affordably deployable to provide the 
necessary data to interpret and report 
individual customer data in a proactive and 
meaningful way. Near real-time personalized 
water usage information and feedback has the 
potential to increase CS substantially [10]. 
Various AI approaches are being investigated 
to deeply analyze customer data, and they 
can be considered within the following four 
categories: Neural Network (NN) methods, 
regression methods, stochastic methods, and 
hybrid methods [6]. 
 
The dominance of NN-based methods is 
notable in customer data interpretation 
because of the large volume of smart metering 
data. Various researchers have employed a 
range of ANNs in their proposed methods, 
including more advanced deep learning (DL) 
NNs. Regression-based methods are also 
commonly used. Regression-based 

approaches are good for identifying key 
factors contributing to customer water 
consumption. Some regression-based 
methods include Support Vector Regression 
(SVR), Support Vector Machine (SVM)-based 
regression, Multivariate Adaptive Regression 
Splines (MARS), and Projection Pursuit 
Regression (PPR). There is a growing use of 
sophisticated stochastic-based techniques 
such as Hidden Markov Models (HMM) to 
forecast customer water usage information. 
Recently reported methods are hybrids, i.e., 
they employ more than one technique and are 
often required for complex customer 
interpretation and reporting requirements. 
Some hybrid methods already adopted by 
water researchers and industry professionals 
for customer water usage profiling include 
General Regression NN (GRNN), Extreme 
Learning Machine (ELM) integrated with 
Variational Model Decomposition (VMD), 
Singular Spectrum Analysis (SSA) coupled 
with linear autoregressive models, 
spatiotemporal Gaussian process models, 
Gaussian mixture models and K-means 
clustering Generalized Additive Models 
(GAM), hybrid Particle Swarm Optimisation–
ANN (PSO-ANN), Bayesian Additive 
Regression Trees (BART),  Gradient Boosting 
Machines (GBM), to name a few examples. 
Each of these techniques fosters the creation 
of sufficient AI to feedback customized 
information to customers, such as their quasi 
real-time water consumption, time-of-use or 
exceedance of high demand thresholds, and 
leak alerts.  
    
Smart meter and AI customer appli-
cations and benefits 
Smart meters and AI will enhance existing 
customer engagement activities and provide a 
whole new range of applications [10]. These 
applications will provide various benefits for 
both customers and their service providers. 
The key applications and benefits are 
discussed below.  
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Figure 2. Pathway to harness customer engagement and satisfaction from smart metering.
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• Proactive handling of customer 
complaints and credit management: in 
addition to the elimination of reading errors, 
estimated reads, self-reads and meter-
reader access, customers will have access 
to web portals and phone applications that 
provide detailed information on their water 
usage and alert them of high water usage 
and bills well before payments are required, 
thereby allowing customers to reduce 
consumption to fit within their monthly 
available budget.  

 
Benefits of this enhanced customer 
engagement application include: reduced 
customer billing complaints; reduced 
external and internal costs of ombudsman 
referred complaints and legal costs; 
improved outcomes from billing disputes; 
and reduced requirement for customers to 
contact bill relief agents. 

 
• User-friendly customer information 

provision: information is power, and when 
customers have tailored water usage 
information for them, they are able to make 
better decisions and more timely actions [11].  

 
Benefits of this application include: reduced 
leaks and associated costs at properties; 
water usage awareness and education; 
greater water efficiency and reduced bills; 
choice of billing frequency (e.g., monthly, 
quarterly, etc.); information on appliance 
efficiency; increased goodwill from 
information sharing with their customers; 
and the ability to be notified of internal leaks 
that may cause building damage and 
insurance claims.  

 
• Provision of innovative customer 

products and services: big data from 
smart meters opens opportunities for water 
service providers to offer a range of new 
products and services to their customers. 
These products and services may generate 
new or improved revenue streams or be 
used to increase levels of CS such as billing 
day flexibility. For example, through under-
standing water usage within a customer’s 
premises, providers may be able to refer 
required services (e.g., plumbers to fix 
identified leaks, efficient appliances where 
high water use, etc.). Water service 
providers may also seek to offer complete 
water monitoring solutions where they sub-
meter their larger water usage customers or 
the provision of algorithms to provide end-
use data (e.g., shower, tap, etc.) on 
residential properties [12]. Other services 
could include tailored benchmarking, 

increased security through monitoring of 
water usage, to name a few.  

 
Customer benefits of this application 
include: billing day flexibility; provision of 
complete customer end-use data logging 
and analytics services; new suites of online 
products and services; and increased 
goodwill from new products and services 
provision. 

 
• Customer satisfaction with heightened 

quality assurance: current urban water 
management approaches adopted by 
industry professionals are reliant on many 
assumptions (e.g., water bill estimates) and 
are subject to error. Customers expect 
others to pay their fair share through 

accurate metering. This relatively low level of 
quality assurance due to decision making 
based on incomplete information has been 
accepted by captive customers for some 
time. However, smart metering and big data 
analytics provides an opportunity to signifi-
cantly enhance the level of quality 
assurance related to water usage, which will 
generate goodwill with customers.  

 
Customer benefits of this application 
include: the ability of large smart meter 
datasets to help detect faulty meters and 
improve meter sizing for non-residential 
customers; water theft; automated 
regulation compliance monitoring; 
improvement in value of goodwill customer 
recognition of better capital management 
and operational efficiency.   

 
A pathway to best practice 
We suggest that there is a “best practice” that 
water businesses might strive for that 
maximises the return on investment on smart 
water metering. The collected meter readings 
need to be assembled into a data repository 
along with other sensor and operational data, 
and complemented with external weather, 
demographic, property, and various other data 
sources. Digital twinning of physical and virtual 
city infrastructure is already driving the push 
for an open source Common Data 
Environment (CDE) for all static and ‘live’ data 
sources.  
 
The level of business transformation based 
around the metering technology might be 
recognised through a capability model. The 
Intelligent Metering Maturity Model is 
suggested and a prototype is illustrated in 
Figure 3. Capability models have provided 
observers with a method of comparing 
businesses against each other and best 
practice, and they have provided a roadmap to 
improvement. 
 
At the lowest level, water businesses would 
score zero with 100% manual metering and no 
digital metering, or incomplete metering (e.g., 
it is estimated that only 50% of the domestic 
properties in the UK were metered in 2015; 
differently, in Australia almost all properties in 
urban areas are metered, but the penetration 
rate of digital metering is roughly 10%). The 
score rises to 1 when digital metering is raised 
to 100% replacing all manual metering, but 
without any in-depth exploitation of the data 
other than automated billing, as is the current 
situation with metering of high-rise buildings in 
many utilities. Applying basic DA and AI 
approaches for leveraging of the data for 
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processes that are essentially operational 
(e.g., network leak detection, planning and 
peak demand analytics, meter sizing and 
meter failure analytics) raises the score. 
Higher scores are achieved by providing leak 
alerting and a customer portal for accessing 
their data and offering frequent (e.g., monthly) 
billing. The highest scores can only be 
achieved when water businesses introduce 
sufficient predictive AI to accurately under-
stand and predict network and customer 
functions without manual human data manipu-
lation and interpretation.  
 
Disruptive or incremental 
innovation? 
Two technologies are under consideration 
here: smart water meters and AI. At times both 
would be considered disruptive in their own 
right and have improved CS. A demonstrative 
case study is given by a smart meter instal-
lation rolled out in Kansas City, Missouri in the 
United States, along with an extensive process 
re-engineering undertaken to leverage the 
technology [13]. The published customer satis-
faction level reported over the following four 
years from 2013 show an uplift of the 
percentage of customers satisfied from the 
high sixties to the mid-nineties. Another case 
study in Newmarket (UK) reports 8% water 
savings achieved by combining a smart 
metering program with data and behavioral 
science.3  Townsville (Australia) avoided a 
costly engineering solution saving USD 4M 
when they used sensors and data analytics 
across their network to identify the true cause 
of low-pressure supply issue and resolved the 
issue through better valve operation. Longer 
term water savings of 6.8% were achieved in 
Sydney (Australia) when smart meter data is 
presented back to the customer via in house 

displays [14]. To realise the CS improvements 
the technology needs to be enabled, first.  
 
Most of the 75 benefits identified from smart 
water metering in reference [9] rely on the use 
of data analytics to mine the data for insights. 
Indeed, one of the pre-conditions is the 
resourcing of a data analytics capability, 
whether through deploying in-house expertise 
or by out-sourcing to their digital metering 
supplier or to consultants. An example of best 
practice in this regard is the recent smart 
meter rollout of the city of Gandía (Spain), 
where the joint effort of the local utility, city 
council, and a telecommunications company 
is leading to the collection of hourly water 
consumption data from over 40,000 smart 
meters and this data is standardized in a Big 
Data platform.4 
 
The willingness of a water business to enable 
the benefits would depend on their appetite 
and capacity for change and, in some cases, 
may require change approval by their 
regulator. Where metered billing is not the 
social norm, water businesses might still move 
to smart metering (or data logging) having 
recognized the potential to deliver the detailed 
data needed to overcome operational and 
water quality issues, and assist water 
conservation efforts. Indications from past and 
recent surveys of water businesses, and inclu-
sions in recent pricing submissions to 
regulators, show that the larger water 
businesses are actively considering a move to 
digital metering. Many smaller regional water 
businesses with less capital and capacity for 
risk, are waiting to see the direction taken by 
larger utilities. However, there are some 
smaller agile water businesses that are better 
able to exploit the benefits of digital techno-

logies, and they are technologically 
leapfrogging the larger metropolitan water 
service providers in their country. 
 
Hence, can we ultimately say 
whether smart water meters and AI 
are disrupting or incrementally 
innovating the water sector? 
Generally, water businesses do not compete 
against each other by virtue of their exclusive 
rights of service and natural monopoly status, 
being government-owned or tightly regulated, 
and sometimes having common owners, 
making their relationship more collegiate than 
competitive. Knowledge and experience are 
shared through formal and informal channels. 
However, a technological laggard will event-
ually be found out by their customers as they 
become aware of superior services offered by 
adjoining water businesses, through various 
channels such as media, government reports, 
discussions with friends and family, moving to 
a new address, to name a few. Water 
businesses that are slow to embrace change, 
are merely widening the technological gap that 
will need to be addressed at some point in the 
future.  
 
Examining the theory of disruptive innovation 
[15], a gap has been identified with mission 
driven institutions that have a higher calling, 
among which water services might consider 
themselves. While both the take-up of smart 
water metering and AI within water businesses 
may be slowly growing after a stuttering and 
fragmented start, we feel they should now be 
considered embedded technologies among 
progressive companies. Following a long 
gestation period, smart water meters and AI 
should now be treated as mature Business As 
Usual (BAU) tools, rather than as must-use 
disrupting technologies. In the absence of data 
warehouses being utilised by utilities [6], smart 
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Figure 3. Suggested 
capability model and 
pathway to best 
practice.
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water meter technology vendors or private 
software companies are providing cloud-
based data repositories, customer portals, and 
offering to fill utilities’ AI gaps as an add-on 
service. In this regard, the development of 
smart metering and AI can be considered 
disruptive, as it created opportunities for new 
economic models, tech actors, and investors 
previously not attracted by the water sector. 
The next significant innovation and business 
step will be materialized when synergies 
between the water sector and other utility 
sectors (e.g., electricity, gas, telecommunica-
tions) will be exploited in a cost-effective 
manner to realize the vision of a digital multi-
utility service provider [16]. Exploiting multi-
sectoral synergies will reduce asset and 
operational costs by collecting concurrent 
water-energy data efficiently,  
implementing flexible and data agnostic 
processing techniques, and ultimately 
designing integrated tailor-made services to 
customers. n 

[9] Monks, I., Stewart, R. A., Sahin, O. and Keller, R., 2019. 
Revealing unreported benefits of digital water metering: 
Literature review and expert opinions. Water, 11(4), 838. 

[10] Monks, I., Stewart, R. A., O., Keller, R and Prevos, P., Towards 
understanding the anticipated customer benefits of digital 
water metering. Urban Water J. (submitted June 2020, 
accepted November 2020) doi:10.1080/1573062X.2020. 
1857800 

[11] Cominola, A., Nguyen, K., Giuliani, M., Stewart, R. A., Maier, H. 
R. and Castelletti, A., 2019. Data mining to uncover 
heterogeneous water use behaviors from smart meter 
data. Water Resources Research, 55(11), 9315-9333. 

[12] Nguyen, K. A., Stewart, R. A., Zhang, H., Sahin, O. and 
Siriwardene, N., 2018. Re-engineering traditional urban water 
management practices with smart metering and 
informatics. Environmental Modelling & Software, 101, 256-267. 

[13] Thiemann, R., Haas, J. and Schlenger, D., 2011. Reaping the 
benefits of AMI: A Kansas City case study. Journal-American 
Water Works Association, 103(4), 38-41. 

[14] Davies, K., Doolan, C., Van Den Honert, R. and Shi, R., 2014. 
Water‐saving impacts of Smart Meter technology: An empirical 
5 year, whole‐of‐community study in Sydney, Australia. Water 
Resources Research, 50(9), pp.7348-7358. 

[15] King, A. A. and Baatartogtokh, B., 2015. How useful is the 
theory of disruptive innovation?. MIT Sloan Management 
Review, 57(1), 77. 

[16] Stewart, R. A., Nguyen, K., Beal, C., Zhang, H., Sahin, O., 
Bertone, E., Vieira, A.S., Castelletti, A., Cominola, A., Giuliani, 
M. and Giurco, D., 2018. Integrated intelligent water-energy 
metering systems and informatics: Visioning a digital multi-
utility service provider. Environmental Modelling & 
Software, 105, 94-117. 

two leading UK universities in water engin-
eering, works by extracting useful information 
form pressure and flow sensors and other data 
sources available.  
 
The new technology enables United Utilities to 
manage the above events much more pro-
actively than before by reducing the time of 
awareness to these events but also, in some 
cases, preventing events from taking place 
altogether. This combination has resulted in a 
range of benefits achieved, from major 
operational cost savings to reduced inter-
ruptions to supply and hence improved service 
to over 7 million people and 200,000 
businesses in the north west of England. As 
the new technology has also demonstrated the 
potential to more efficiently guide United 
Utilities’ personnel to the problem areas and to 
support the ICC operators to make better and 
more informed decisions when tasked with the 
identification of a suitable strategy to respond 
to those events, further benefits arising from 
the pursued fully managed life-cycle of events 
approach are expected. n 
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AI–BASED EVENT MANAGEMENT AT UNITED UTILITIES 

“At a minimum, water service providers must embrace incremental digital transformation, or 
government sanctioned alternative retail models offered by innovative private technology 
providers will be pushed upon them and strip back their function to heavily constrained 

water asset operators.” 
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Unaccounted for Water (UW), and d) 
Discolouration Risk Increase (DRI). It can be 
noticed that even though CML, AMLP and UW 
are reduced when compared to the ‘no 
response’ scenario, the ‘new methodology 
response’ offers further improvements over the 
‘current practice response’. Indeed, the ‘new 
methodology response’ further reduced all 
impact indicators except AMLP that remained 
the same. The ‘new methodology response’ 
also suggested a smaller number of interven-
tions to implement as evidenced by the 
significant improvement in DRI and cost. In 
light of the above, it can be concluded that 
through interaction with the IRPT operators 
could have identified a more effective response 
solution. Hence, this case study shows the 
potential of the IRPT to be beneficially used by 
United Utilities to make better and more 
informed decisions. 
 
Summary 
This paper describes an AI-based approach for 
managing events in WDSs such as pipe 
bursts/leaks and equipment failure. The key 
pieces of new technology are comprised of a 
series of ML and other advanced analytics 
methods that are used to detect and locate 
these events and then identify an optimal 
response strategy, all in (semi) automated 
fashion and in near real-time. This new 
technology, developed in collaboration with 
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This article presents a similar history, of the 
design and construction of the Mar del Plata, 
Argentina, Outfall System. But here, we show 
how the improvements to the water quality of 
the Mar del Plata’s beaches were immediately 
felt following the outfall construction and 
commissioning [5], propping up the city’s 
success as one of the premier touristic desti-
nations in Argentina. More than that, Mar del 
Plata is a great example for reflection and 
evaluation whether such long times for imple-
mentation of solutions can be afforded if we 
are to achieve the SDGs by 2030. 
 
The City 
Founded 146 years ago, the coastal city of 
Mar del Plata is the most popular vacation 

destination in Argentina. Its beaches (Fig. 1) 
are a main attraction to both local residents 
and tourists, making Mar de Plata one of the 
largest urban settings in the country [5] with a 
population nearing one million during the 
holiday season. As tourism is a vital part of its 
economy, protecting the water quality of its 
beaches is paramount to the city. 
 
With over 95% sewerage coverage, a 
submarine outfall operating since 2014, and a 
new wastewater treatment plant since 2018, 
Mar del Plata can be considered to have an 
advanced level of sanitation. This effort 
resulted in greatly improved water quality for 
primary recreation, safeguarding public health 
and promoting touristic activity.  Regular 

monitoring programs indicate the entire city’s 
coastal waters meet local and international 
guidelines for primary contact recreation.  
 
We would like to highlight the immediate 
improvements of the recreational water quality 
of Mar del Plata since the commencement of 
the submarine outfall operation. Fig. 2 
presents 30 years of entorococci monitoring in 
Mar del Plata’s beaches. It can be readily seen 
that the water quality standards for indicators 
of fecal contamination were met almost 
immediately following the outfall construction. 
For example, at Delicias Beach approximately 
0.9 km from the discharge, the monitored 
enterococci concentrations reduced 
considerably from 50,000 to 27 entoro-

THE HISTORY OF THE MAR  
DEL PLATA OUTFALL SYSTEM:  
A TALE WORTH TELLING 
BY MARCELO SCAGLIOLA, ANA PAULA COMINO, PHIL ROBERTS AND DANIEL BOTELHO

In a previous issue of Hydrolink, we discussed the contribution of marine outfall systems as part of the solutions for 
the UN Sustainable Development Goals (SDGs), and introduced general guiding principles for system design, 
construction, and operation [12]. Because they convey the effluent to the ocean, outfalls are frequently (and 
erroneously) perceived as a pollution source. As a result, all too often the adoption of marine outfalls encounter 
fierce social and political resistance taking many years for their construction and implementation, preventing the 
affected communities from enjoying better sanitation outcomes [15]. 

Figure 1. Aerial view of Mar del Plata’s beaches.
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cocci/100 ml following commencement of the 
outfall operation (Fig. 2b). 
 
In hindsight, one can readily observe the 
benefits of the outfall operation. However, the 
project history dates back to the beginning of 
the 1980’s, owing to several serious impedi-
ments along the way.  It is therefore important 
to look back at this period to identify and 
reflect over the reasons why it took so long to 
complete the outfall project. In doing so, it is 
also opportune to present the mitigation 
measures undertaken for recreational water 
quality improvements before concluding the 
outfall installation. 
 
Vision and early project stages 
In the early 1980’s, the sewage discharge was 
located approximately 10 km north of the city 
at the existing outfall starting point. Tasked 
with the challenge of protecting Mar del 
Plata’s beaches, Eng. Alberto Baltar, director 
of Obras Sanitarias Sociedad de Estado 
(OSSE) at the time, had the initial vision for a 
submarine outfall and diffuser system. His 
vision was based on his knowledge of similar 
technology applications around the world. 
Further, Eng. Baltar had a strong perception 
of the self-purifying capacity of the sea in Mar 

del Plata, noting its open coast, energetic surf 
zone, and intermittent storms and erosive 
processes, all of which indicated a favorable 
system for assimilation of the organic loads 
from the urban effluent (Baltar, pers. comm.).  
 
With this initial vision, almost exclusively Eng. 
Baltar’s, the city of Mar del Plata commis-
sioned a study to present an outfall system as 
an alternative for adequate effluent disposal in 
the area [9].  The study comprised several field 
studies, which were the first to characterise 
the physico-chemical and bacteriological 
composition of both the wastewater effluent 
and the water near the discharge. These 
studies also quantified relevant local ocean-
ographic processes to conclude that a marine 
outfall could be adopted as a solution for the 
city’s effluent discharges. 
 
Following these preliminary investigations, 
OSSE hired Eng. Russell Ludwig, a renowned 
consultant on outfalls, who reviewed the 
Instituto Nacional de Ciencia y Técnicas 
Hídricas (INCyTH) [9] studies and recom-
mended additional engineering elements to 
the diffuser system [11]. Of particular relevance 
was the recommendation for application of 
new advanced modeling techniques for 

assessment of nearfield dilution considering 
local currents [12]. These new formulations had 
been proven to be the most accurate when 
compared to field data of operating outfalls 
and later became the basis for the model 
PLUMES [2] that was subsequently adopted 
for the Mar del Plata outfall design. 
 
New treatment plant and delays 
As a first step preceding outfall construction, 
an effluent pre-treatment plant (later named 
the Eng. Baltar plant) was tendered and 
constructed. Starting operation in 1989, this 
pre-treatment plant comprised 0.5 mm screen 
filters designed to work in tandem with the 
submarine outfall. However, the plant and 
outfall worked together for only four years. In 
2019, the plant was dismantled and replaced 
by a new pre-treatment plant. 
 
Since inception of the outfall system, it took 
almost an entire decade for the construction 
of the first pre-treatment plant. Over this 
period, a series of debates were held 
between proponents of the outfall and those 
who were opposed to it in favor of a 
secondary wastewater treatment plant. 
(Sarandón, pers. comm.). These discussions, 
in part responsible for the delays over this first 
decade, presented convincing arguments for 
a submarine outfall as the best disposal alter-
native for Mar del Plata. 
 
While economic factors always permeate 
large infrastructure projects, technical aspects 
were at the forefront for selection of the best 
alternative. Notwithstanding this, shortly after 
commissioning the first pre-treatment plant, 
Eng. Baltar retired, which proved to be crucial 
for the project delays. The project benefits 
were questioned, discussions effectively 
returned to ground zero, and new technical 
and political arguments were put forward 
probing whether a secondary treatment plant 
would be a better solution than the combined 
pre-treatment and outfall system. 
 
Secondary treatment or outfall 
system? 
Results obtained in Mar del Plata up to the 
current day show that these discussions were 
counterproductive, and that the focus should 
have been on recreational water quality. 
Independent of the level of wastewater 
treatment (primary, secondary, or tertiary), 
existing marine outfall technology is not only 
adequate but it can be argued is essential for 
maintaining water quality for primary contact 
recreation. Even advanced levels of treatment 
will still require an outfall that removes the 
effluent far from shore [13].  
 

Figure 2. A. Faecal contamination indicators in Mar del Plata’s beach before and after the outfall (log 
scale). B. Details at Las Delicias, Violeta e Roja Beaches. The yellow bar shows monitoring results 
from the Contamination Monitoring Program (CMP) supported by the Virtual Beach modelling before 
the outfall operation commenced. 

A.

B.
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Existing mathematical models can be used to 
define discharge location and diffuser design, 
to ensure that the self-purifying capacity of the 
receiving waters is sufficient to maintain water 
quality in bathing zones. Human enteric 
bacteria are not endemic to marine systems 
and as a result undergo significant die-off 
once discharged in the ocean. A well-
designed outfall system takes into consider-
ation bacterial mortality and ensures 
recreational waters are free from harmful 
enteric bacteria, thus precluding the need for 
additional disinfection. Furthermore, the rapid 
dilution achieved with a marine outfall diffuser 
(approximately 1:100) greatly improves the 
assimilation capacity of the receiving marine 
ecosystem. 
 
A secondary wastewater treatment plant 
reduces biochemical oxygen demand (BOD) 
by oxidation of the organic load through a 
series of distinct microorganisms in 
succession within a controlled environment. 
The same result can be achieved by dilution 
with an outfall diffuser allowing the marine 
environment itself to undertake the oxidation 
process, and, as a result, reducing the level of 
treatment required. Therefore, the type of 
treatment and outfall design should be 
thought of as parts of an overall system to be 
evaluated, and not competing options as 
often argued. 
 
Unfortunately, this old discussion of 
‘secondary treatment vs outfall is still 
common in many proposed sanitation 
projects. The precedent of Mar del Plata 
shows that discussions must be supported by 
an assessment of the marine environment not 
only as a receptor of effluent discharges, but 
as a nature-based solution and part of an 
integrated sanitation system. The assimilation 
capacity of the receiving environment has 
enormous implications for the choice of 
treatment system.  
 
Determination of assimilative capacity 
requires evaluation of the marine ecosystem 
centered on baseline data collected prior to 
discharge and identification of potential 
ecological vulnerability points. This evaluation 
permits the design of post-discharge 
monitoring programs to continuously assess 
the environmental disturbance resulting from 
the effluent disposal. Such monitoring 
programs are important components within 
the broader context of an Integrated Coastal 
Management (ICM) system [4]. 
 
Sanitation planning within an ICM strategy, 
which continually evaluates the environmental 

impact of sewage disposal through ecological 
studies and monitoring of the receiving 
environment (both water and sediment water 
quality variables), allows constant 
assessment of ecosystem health as well as 
identification of requirements and opportun-
ities for interventions in case of environmental 
harm.  
 
Significant savings can result from this 
continual environmental diagnosis method 
without necessarily relying on more advanced 
levels of effluent treatment. These savings can 
be used for extending the sewerage network 
to regions with limited coverage, a common 
situation in developing nations. As such, 
scarce resources can be better spent on infra-
structure and social development to satisfy 
the basic sanitation needs to be delivered by 
the Sustainable Development Goals (SDG) 
initiatives.  
 
Guaranteeing 100% water supply, sanitation 
and hygiene for the world’s population by 
2030 will require optimal application of 
economic resources. Recognised as a 
solution to protect human health from 
effluent-borne infections, submarine outfall 
systems require relatively low capital and 
operational costs. Our history strongly 
suggests that, at least initially, economic 
resources should be used to extend the 
coverage of sewerage networks in combi-
nation with an outfall system (provided there 
is adequate environmental assimilation 
capacity). As a result, local communities will 
enjoy the benefits of proper effluent 
conveyance and disposal, as well as the 
ocean as an environmental treatment 
resource. Mar del Plata is living proof that this 
strategy for sanitation works. 
 
More on history and additional 
environmental studies 
Returning to our outfall history, it is important 
to mention that the INCyTH study not only 
focused on a preliminary assessment of the 
receiving water but also recommended 
additional studies that included continual and 
permanent monitoring for the beach’s recre-
ational water quality and the wastewater 
effluent parameters. 
 
Following Eng. Baltar’s retirement, despite the 
decision-making delays regarding the 
sanitation alternative choice, data collection 
for preliminary studies continued and was 
augmented. Studies looked at a range of 
environmental aspects, including heavy 
metals in sediments [16], effluent assimilation 
capacity [10], permanent bacterial monitoring 

at the city’s beaches [16], [17], [21], permanent 
monitoring for effluent and pretreatment solid 
waste characterisation [21], ocean currents [20], 
marine receiving environment monitoring [21], 
as well as intertidal and subtidal physico-
chemical characterisation [21]. These studies 
further confirmed the conclusions obtained in 
the earlier study by INCyTH [9], supporting the 
recommendation that an outfall and diffuser 
was the best solution for the city’s effluent 
disposal. These studies were also of funda-
mental importance in that they determined the 
baseline conditions prior to outfall 
construction, and could therefore be used for 
evaluation of the outfall performance. 
 
Reenactment of the submarine 
outfall project as part of the 
sanitation solution for Mar de Plata 
Almost one decade after the Eng. Baltar plant 
commissioning, OSSE with the help of the 
National Entity of Hydraulic and Sanitation 
Works [7], recruited an experienced interna-
tional consultant (Eng. Martí) to review the 
previous studies and deliberate on whether a 
secondary treatment plant or an outfall should 
be adopted as part of the sanitation solution 
for Mar del Plata. Eng. Martí concluded an 
outfall would be the most appropriate option 
for Mar del Plata and himself executed the 
modeling required to define the outfall design 
parameters and additional specifications to 
prepare the corresponding construction 
tender. The tender was issued in 1999 for the 
second stage of the treatment plant, 
comprising upgrades to the existing 
pretreatment plant and construction of the 
submarine outfall.  
 
It is to be noted that another decade had 
passed since inauguration of the initial 
pretreatment plant before tendering for the 
outfall construction. These delays were 
largely due to lack of project technical 
support following Eng. Baltar retirement and 
recommencement of the old discussions. As 
a result of this chronology, it is concluded that 
such important projects cannot be solely 
vested in a single person for its execution. 
When there is a network of professionals 
to provide support for the project, eventual 
project impediments can be readily and 
efficiently overcome, resulting in project 
improvements and its timely conclusion. A 
series of examples in this regard were 
essential for completion of Mar del Plata’s 
outfall. 
 
First attempt at outfall construction 
Tendering for outfall construction started in 
1999, financed by OSSE. However, a series of 
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complex tendering processes, technical 
issues, and a serious economic crisis in 
Argentina in 2000, rendered the project no 
longer viable. Once again, the project was 
delayed and a new tender process could only 
be undertaken in 2008, thus wasting another 
decade. 
 
Nevertheless, the effluent and marine environ-
mental monitoring programs continued and 
were showing serious contamination of Mar 
del Plata’s beaches by the discharge plume. 
The monitoring data comprised an important 
environmental baseline to influence decision-
making with regards to the sanitation of the 
city. 
 
Second and successful attempt at 
outfall construction 
Following more favorable economic and 
political conditions, supported by the 
monitoring information, a second attempt to 
construct the marine outfall was set in motion 
in 2006. The Argentinean Government and 
the Municipality of Mar del Plata signed a 
covenant for the outfall construction, based 
on the recognition of the importance of Mar 
del Plata’s beaches as a tourist resource for 
the entire country. Another six years had 
passed since the first failed construction 
attempt in 2000. 
 
By this time, 10 years of monitoring data were 
available, providing an excellent environ-
mental baseline prior to outfall operation with 
great scientific value. It was the perfect oppor-
tunity to present the monitoring data and 
announce the Mar del Plata outfall 
construction to the international community at 
a specialised conference in Antalya, Turkey 
[19]. Shortly after, a new outfall and diffuser 
design commenced, including diffuser 
modeling and pipeline material re-specifi-
cation. This time, taking the lessons learnt 
from the first attempt, collaboration was 
established between ENOHSA, OSSE, inter-
national consultants, and the University of 
Cordoba. A new tender process was estab-
lished, a contract was awarded and outfall 
construction finally started in 2008. The works 
were financed by Argentina’s National 
Treasury and executed under the 
management of Mar del Plata’s municipality 
government. 
 
Interaction with Marine Outfall 
Technical Committee  
Virtual Beach Model Calibration 
As a result of participation in Marine Waste 
Water Disposal (MWWD) conference in 2006 
[19], a fruitful collaboration between OSSE and 

the IAHR-IWA Technical Committee on Marine 
Outfall Systems was initiated, which was 
fundamental for the completion of the outfall 
project. Over the same period, in 2006, new 
regional recreational water quality norms were 
enacted for recreational water quality in 
Argentina. Suffice to say, the water quality of 
Mar del Plata’s beaches did not meet the 
standards at the time [1]( see also Fig. 2). It 
was then decided that a mitigation strategy to 
protect the recreational water quality was 
required while outfall construction was 
underway [3]. 
 
Data from the 10-year environmental 
monitoring were adopted for calibration of the 
Virtual Beach bacterial dispersion model [8], 
such that bacterial contamination levels at Mar 
del Plata’s beaches could be predicted one 
day in advance [11]. This same model was then 
adopted with other studies undertaken by 
OSSE on local water currents (Scagliola et al. 
1998) and bacterial decay [18], [23] to design a 
Contamination Mitigation Program based on 
sewage effluent hypochlorite dosing. 
 

A central aspect of the Mitigation Program 
was the identification of days requiring 
effluent chlorination, the level of dosing, and 
the start and end times of the operation. This 
Program, which was in place between 2008 
and 2014, was an effective effluent 
management measure that ensured Mar del 
Plata’s beaches met recreational water quality 
standards prior to outfall construction [24], [25]. 
On average, chlorination was undertaken in 
25 of the 90 summer days considered in the 
Mitigation Program, allowing not only 
significant cost savings but also minimization 
of secondary detrimental chlorination effects 
[4], [6]. The Mar del Plata effluent disinfection 
based on the Virtual Beach predictive model 
proved to be a valuable innovation that can 
be recommended to locations that do not 
meet water quality standards while sanitation 
solutions (i.e. a marine outfall) are yet to be 
completed. Such innovation could only be 
accomplished by collaboration between local 
investigators with water quality modeling 
experts. 
 

Figure 3.  Final section of the Mar del Plata outfall showing diffuser ports ready for installation.
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The interaction between OSSE and the IAHR-
IWA TC on Marine Outfall Systems culminated 
in the organisation of the International 
Symposium of Marine Outfall Systems in Mar 
del Plata in 2011 congregating over 300 
participants from across the globe to share 
their experiences on diverse aspects of outfall 
design, construction and operation. 
 
Outfall installation problems 
The Mitigation Program proved to be efficient 
in improving the city’s recreational water 
quality while construction of the outfall was 
underway. However, over this second 
construction attempt, new problems came to 
light. Originally, the design considered a 
buried manifold across the entire outfall 
reach. However, due to the vigorous local 
sediment dynamics, the dredged trench was 
reburied before installation of the pipeline 
could be undertaken. 
 
As a result, an alternative trenchless design 
was presented as a solution to the problem. 
The new design comprised anchoring the 
outfall to the seabed and adjustment to its last 
700 m alignment. Given these modifications, 
OSSE consulted the IAHR-IWA TC on Marine 
Outfall Systems who recommended a 
qualified consultant to review the alternative 
design. The positive interaction between the 
construction team and the design reviewer 
permitted continuation of construction 
through to completion in 2014 (fig. 3). 
 
New wastewater treatment plant 
Simultaneously to the submarine outfall 
design and construction, a new treatment 
plant design was undertaken to replace the 
Eng. Baltar pretreatment plant. Installed in a 
nearby larger building, the new location could 
accommodate future upgrades that might 
become necessary, depending on either the 
receiving marine water quality monitoring 
indicators or in case new and more stringent 
water quality standards are put in place. This 
plant, functioning since 2018, adopts new 
technology, including primary treatment 
followed by a pre-staged de-aerator and 
degreaser system, all of which are essential to 
dealing with the urban effluent characteristics 
that are highly affected by the local fishing 
industry.  
 
The plant discharges to the 4.2 km long 
marine outfall. The outfall terminates in a 
diffuser along its final 500 m that consists of 
ninety 15 cm diameter ports. Together, the 
sewage collectors, new treatment plant and 
outfall form Mar del Plata’s sanitation system. 
With these installations, the environmental 

monitoring of Mar del Plata’s beaches 
showed that recreational water quality 
standards for fecal Enterococci were not 
exceeded (fig. 2). Further, near field 
monitoring shows there is neither organic 
enrichment nor heavy metal and hydrocarbon 
contamination in the sediments [22]. Moreover, 
benthic organism studies indicate good 
conditions and a healthy marine receiving 
environment [5], [25]  
 
Discussion and conclusions 
We have described an extensive project 
process that involved multiple technical and 
institutional actors. Noting the long times to 
complete the outfall construction, as well as 
past and current wastewater treatment plants, 
the sanitation plan for Mar del Plata had to 
progress at all levels (local, provincial, and 
national), as a state policy independent of 
government changes. 
 
For more than 30 years, different city mayors, 
hundreds of technical professionals and 
workforce from OSSE, local and international 
consultants, and National and Provincial 
Entities and Authorities participated and 
contributed to the sanitation project. It is 
impossible to name every single person 
without unjustly missing important contribu-
tions, but it is fair to say those involved were 
genuinely interested in obtaining the best 
solutions. There were long periods during 
which the project was put into question. The 
doubts with regards to the project were 
generally of a technical nature, whereby the 
choice between outfall and a secondary 
treatment plant promoted a debate that 
ultimately allowed the project’s continuation. 
Therefore, the technical basis behind such 
projects must be sustained by a network of 
professionals that are able to understand and 
solve the myriad of problems that may occur 
throughout a project’s lifetime, from inception 
through construction and into operation, and 
eventually until decommissioning. 
 
Today’s accomplishments were only possible 
thanks to the assembled network effort, 
knowledge and will to see the project to 
completion. Specially, the concerted actions 
from OSSE and successive local and national 
governments were crucial to overcome 
obstacles to the outfall construction. These 
institutions had the foresight to prioritise the 
development and implementation of public 
policies as a vehicle to guarantee the water 
quality of the beaches enjoyed by visitors 
from across the country. It is therefore 
imperative to have water quality objectives 
and receiving environmental values ahead of 
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any specific technical solution, and not the 
other way around. 
 
Likewise, the implementation of the Marine 
Environment Monitoring Program in 
conjunction with adequate assessment of its 
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results were fundamental, not only for evalu-
ation of ecosystem health and recreational 
water quality during the project progression, 
but also for recognition that the outfall 
construction was essential for the sanitation 
needs of the city. The program was also 
crucial to demonstrate that, once the project 
was initiated, no additional steps would be 
required to complement the overall city’s 
sanitation plan. Further, the monitoring 
allowed the design of a Contaminant 
Mitigation Program using the Virtual Beach 
system that was based on sampled 
parameters, maritime conditions and 
modeling predictions. For other localities still 
requiring completion of their sanitation 
programs, application of a similar system is 
recommended as an effective means of 
reducing the risk of beach fecal contami-
nation.  
 
Possibly, the most important conclusion from 
this story is the importance of networks to 
advance, improve, and finalise projects. 
Along the way, the project largely benefited 
from the interaction of professionals through 
the IAHR-IWA TC on Marine Outfall Systems. 
These interactions culminated in the adoption 
of tools developed by Committee members, 
as well as the identification of experienced 
consultants for crucial project adjustments. 
Further, the meetings organised by the TC 
and other relevant organisations created 
optimal conditions for the establishment of an 
effective network of professionals, which 
proved to be the best conduit for reduction of 
project uncertainties and timelines, and for 
the development of solutions to drive the 
project towards its final objectives. 
 
This experience shows how Technical 
Committees are invaluable for the collective 
construction of sanitation projects around the 
world. Technical meetings, such as the 
International Symposium on Outfall Systems 
held in Mar del Plata in 2011, are not only 
important for the outfall technical community 
but also offer an important vehicle for 
communication of sanitation activities to the 

public at large, and are therefore an integral 
part of achieving SDGs 6.6•. 
 
As previously discussed, marine outfall 
systems can play an important role to achieve 
SDG’s by 2030. However, long periods of 
inaction cannot be justified nor afforded. The 
professional networks and dissemination of 
learned lessons between projects were 
demonstrated to be the best approach to 
reduce delays and conclude projects. The 
cost-benefit ratio provided by marine outfalls 
is likely to lead to improved sanitation condi-
tions for achievement of SDGs. 
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Spillways are key dam safety structures 
releasing excess water from reservoirs, in 
particular during floods. Weirs control the 
discharge through free flow spillways and 
corresponding reservoir levels. A high 
discharge capacity spillway allows for more 
reservoir water storage while keeping dam 
overtopping and other upstream flood related 
risks at acceptable levels. Since the discharge 
capacity of a weir is proportional to its crest 
length, engineers and scientists early on 
developed solutions to maximize this crest 
length [5] while responding to projects goals or 
sites limitations (restricted spillway width, 
project economics, etc.). In this respect, 
Labyrinth weirs, firstly formally studied in 1941 
by Gentilini, place the crest of a thin vertical 
wall along a triangular, trapezoidal or rectan-
gular path (in plan view) to maximize the crest 
length within a limited footprint (Figure 1). The 
number of Labyrinth weir projects increased 
exponentially after the publication of key 
research by the US Bureau of Reclamation 
and the American Society of Civil Engineers 
(ASCE) in the eighties and the construction of 

Ute Dam (USA). Additional noteworthy studies 
that have advanced the state-of-practice 
regarding Labyrinth weirs have been 
conducted at the Laboratório Nacional de 
Engenharia Civil (Portugal) and at the Utah 
Water Research Laboratory at Utah State 
University (USA). More than one hundred 
structures have been built to date [1] and 
Labyrinth weirs remains an active research 
topic today. 

From 1999, the NGO Hydrocoop began inves-
tigations to improve the traditional Labyrinth 
concept, in close collaboration with the 
Electricité de France - Laboratoire National 
d’Hydraulique (EDF-LNH) in France and then 
the Indian Institute of Technology Roorkee in 
India and the Biskra University in Algeria [3]. 
Their objective was to develop a new type of 
labyrinth weir with an even smaller footprint 
while maintaining a structurally simple and 
economical structure that could readily be 
constructed. Such a weir could be placed atop 
gravity dams in addition to the various applica-
tions common to Labyrinth weirs 

(embankment dams, run-of-river, etc.). In 2003, 
based on the results of many tests with 
selected shapes at University of Biskra and 
some experiments at EDF-LNH, Lempérière 
and Ouamane proposed for the first time the 
Piano Key weir [2].  

A Piano Key weir is a rectangular Labyrinth 
weir featuring inclined aprons with cantilevered 
apexes, increasing crest length while reducing 
footprint size. This arrangement is also struc-
turally advantageous as the cantilevered walls 
are shorter and steel reinforcement reduced, 
relative to a Labyrinth weir. The name “Piano 
Key weir” refers to the rectangular crest pattern 
and was proposed by Claude Bessière, who 
was involved in the development of Fusegates, 
a fuse system placed on a spillway crest that 
operates as a Labyrinth weir for a moderate 
range of reservoir levels and overturns at high 
reservoir elevation to free the supporting crest. 
Several types of Piano Key weirs have been 
defined based upon the geometry of the 
overhangs with the types A and B (as 
described by Lempérière and Ouamane in 
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Labyrinth weirs are an efficient solution for free surface flow whose development has been initially favored by a 
close collaboration between research and industry in the United States. Piano Key weirs improve the traditional 
Labyrinth concept and have been developed with the same collaborative spirit at an international level. Both 
structures have a huge potential of development and application worldwide, which has been exploited yet only in 
a few countries. 
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Figure 1. Hope Mills dam spillway with a 4.6 m high Labyrinth weir in North 
Carolina, USA (commissioned 2018). Photo courtesy of Schnabel 
Engineering.

Figure 2. Charmines dam spillway in France with a 23 m wide type-A piano 
key weir section on both sides of the crest gates (PKW commissioned in 
2015). Photo courtesy of EDF.
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2003) being the primary types constructed. It is 
interesting to note that the dams of Beni 
Bahdel and Bakhada, built during the 1930s in 
Algeria, are equipped with a weir having an 
inclined upstream apron similar to the type B 
Piano Key weir.  

Following 2003, developments continued at 
the University of Biskra, where a specific 
experimental platform was built by Professor 
Ouamane [4]. Additional advancements at LNH 
were provided by Mr Cicero but also at IIT 
Roorkee, IWHR Laboratory (China) and at Ho 
Chi Minh and Hanoi Hydraulic Laboratories 
(Vietnam). Subsequent research contributions 
and design advancements were provided by 
Ecole Polytechnique Fédérale de Lausanne  
(Switzerland), University of Liege (Belgium) 
and Utah State University (USA). The next 
crucial step in Piano Key weir development 
was reached with the design and construction 
of the first prototype structures. Electricité de 
France with Mr Laugier applied the concept to 
increase the discharge capacity of existing 
dams in France (Figure 2), while it has been 
used by the Vietnamese National Committee 
on Large Dams with the advices of Mr Ho Ta 
Khanh to avoid more expensive and less safe 
surface gates on new structures in Vietnam 
(Figure 3). As for traditional Labyrinths, the 
collaboration between research, consultancy 
and industry was a key element in the Piano 
Key weirs development success. Of particular 
note is the early organization of several 
specific international workshops and confer-
ences that facilitated the connection of all 
these actors, forming an international nonlinear 
weir community. At these special events, an 
open and friendly environment was estab-
lished where knowledge from practice and 
research was freely exchanged; these events 
also resulted in the publication of multiple 

reference books on these two weir types 
(https://www.pkw.uliege.be).  

Since the 2006 Goulours dam Piano Key weir 
commissioning in France, more than 35 Piano 
Key weirs have been build worldwide, 
consistent with the number of traditional 
Labyrinth weirs built during that same period 
[1]. Research continues throughout the globe, 
with an average of 15 contributions in scientific 
journals every year since 2010. This prompt 
and fast development shows that the Piano 
Key weir solution fills a gap in hydraulic struc-
tures engineering, in particular in the current 
period of climate evolution, limited resources 
and continually increasing water related 
issues.  

Labyrinth and Piano Key weirs, both very 
efficient free surface flow weir solutions, have a 
huge potential of development and application 
worldwide. This potential has been well used 
for the first type in the US, while for the latter it 
has mainly been exploited for existing dams in 
France and new structures in Vietnam. It is the 
authors’ belief that the fast development of 
these nonlinear weir solutions will continue  
into the future, with a wish that the same  
level of enthusiasm, collaborative spirit and  
competency with which it began persists. n 
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