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Introduction

* Changes in mean annual and maximum annual daily discharge
progressively arise as strongly site-dependent phenomena;

* Both climatic and anthropic factors must be considered in
interpreting such changes;

* Decrease trends in annual mean values can have a dramatic impact

on freshwater demand sustainability and flood and precipitation
extremes raise the concern of the public, media and experts;

* The climatic signal at annual and monthly scale is generally weak, so
that series’ length and quality are crucial in order to obtain reliable

results.

* As anthropic drivers effects of reservoirs and land use changes have
been considered for large space and time scales



Impact of Global Warming on the
water cycle (1):
Flood timing
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Fig. 1. Observed trends of river flood timing in Europe, 1960-2010. The color scale indicates earlier or
later floods (days per decade). Regions with distinct drivers: Region 1, northeastern Europe (earlier snow-
melt); region 2, North Sea (later winter storms); region 3, western Europe along the Atlantic coast (earlier soil
moisture maximum); region 4, parts of the Mediterranean coast (stronger Atlantic influence in winter).

Bloeschl et al., Science, DOI: 10.1126/science.aan2506, 2017



Impact of Global Warming on
the water cycle (2):
Flood intensity
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Fig. 1 | Observed regional trends of river flood discharges in Europe
(1960-2010). Blue indicates increasing flood discharges and red denotes
decreasing flood discharges (in per cent change of the mean annual flood
discharge per decade). Numbers 1-3 indicate regions with distinct drivers.
1, Northwestern Europe: increasing rainfall and soil moisture. 2, Southern
Europe: decreasing rainfall and increasing evaporation. 3, Eastern Europe:
decreasing and earlier snowmelt. The trends are based on data from

n = 2,370 hydrometric stations. For uncertainties see Extended Data
Fig. 2b.

Bloeschl et al., Nature, https://doi.org/10.1038/s41586-019-1495-6, 2019
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River-flow data availability: annual and daily data

Watershed

Rivergauge
station
Area

[km?]
Maximum elevation
[ma.s.l.]
Average elevation
[ma.s.l.]
Minimum elevation
[ma.s.l.]
Observation period
Sample
Size
Mean annual volume
[mm]

Adige
Trento
9763
3899

1735

186
1862-2011
150

708

Mincio

Monzambano

2350

3556

966

60
1950-2011
62

709

Chiese

Gavardo

934

3462

1230

198
1934-2018
72

1091

Oglio
Sarnico
1840
3554

1429

154
1933-2011
79

979

Adda

Lecco

4508

4050

1569

197
1845-2016
172

1151



Adda River in Lecco (4508 km?
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Quality control of river-flow data
Data inconsistency, heterogeneity, anthropogenic regulations were checked
by intercomparing long term time series e.g. the 172 years of Adda river

PANGAEA.
o Data Publisher for Earth & Environmental Science SEARCH  SUBMIT  ABOUT  CONTACT

Ranzi, Roberto; Michailidi, Eleni Maria; Tomirotti, Massimo; Crespi, Alice; Brunetti, Michele;
Maugeri, Maurizio (2020): Multi-century (1800-2016) meteo-hydrological series for the Adda river
basin (Central Alps). PANGAEA, 4. https://doi.org/10.1594/PANGAEA.919890
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Analysis methodology

Individual series analysis: k=1, ..., N Xk =M U+ qg

Xkj — Xik
t; —t;

m;, = median (Skij = ;1 <i<j < nk>

= median(x,; —m, t;1 <i<n
Advantages: Ax (Xki Kk Li k)

* they are more robust when outliers are present;

* they are comparable to least squares estimators in terms of standard error
according to hypotheses of normality and homoscedasticity of the dependent
variable, but they are superior according to the hypothesis of normality
(when used on its own);

» confidence boundaries for regression line slopes can straightforwardly be
derived.



Analysis methodology

Pool analysis: k=1, ..., Nwith N >2

N an(t—f\)x ng t.
_ k=1 &j=1\"1 k kl,whe‘ref,\(=z L

m _t
p n ~
R=1 Zifl(ti — ty)? i=1 N
Sen-Adichie test for parallelism hypothesis Hy:my = ... =my =m,
Advantages:

* more robust estimate relying on a large sample size;

* if the parallelism hypothesis cannot be rejected, pool slope m,, can be
interpreted as a regional trend estimate. |



Results: river-flows
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Discussion (1-effect of climate)

Potential reasons for a regional statistically significant river-flow decline:
e Storage in glaciers
* Decrease in mean-aerial annual rainfall depths

* Increase in hydrologic losses (evapotranspiration
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The climatic signal at annual and monthly scale is generally weak: teleconnections with
wavelet transform

Wavelet cross coherence between sunsposts (Zanchetti et al., 2008 for the Po river)
and precipitation does not indicate significant coherence
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Instead some coherence with North Atlantic Oscillation at 11-15 years
scale is observed
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Discussion 2 -ncrease in hydrologic losses
(evapotranspiration) due to afforestation
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Afforestation as a concomitant cause
Land cover analysis 1954, 1980, 1999 and 2018 (Lombardy Region).

Woodland (W), Bushland (B), Grassland (G), Cropland (C), Fruit trees (F),
Urban (U), Other (O).
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Afforestation example (1954 vs 2018)
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Land use changes likely cause of increased ET=P-Q losses

Area (km2)

Bushland .
Cropland 81.0
|letu'es 90.2 |
Grassland 1023.7

Other




Afforestation

Zierl and Bugmann (WRR, 2005)
showed after simulations and Gurtz
et al. (HP, 1999) also with data on
the Swiss Alps how forested areas

decrease annual runoff
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Figure 5. Relative change in annual runoff (%) comparing
time slice 1 (1980 to 2000) and time slice 6 (2080 to 2100)
for each of the seven scenarios used in this study depending
on changes in forested area. Different symbols indicate the
different case study areas.



Discussion (3-effect of reservoirs upstream and Lake’s
management downstream)
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Fig. 3 Crescita del volume totale dei serbatoi alpini stagionali nel bacino dell’Adda prelacuale



Discussion (3-effect of reservoirs and Lake’s management
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Annual
maxima of
daily inflow
show a
decline with
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significance

1845 1860 1875 1890 1905 1920 v 1935 1950 1965 1980 | | m |t
ear




Afflussi-massimi

TS afflussi massimi (184
TS afflussi massimi (184
TS afflussi massimi (194

-

|
1

<

=t
——————

i s 3

!
H
!
H
H
\
|-
[]

\
!

'S deflussi massimi (1845-2(
I'S deflussi massimi (1845-1945)
I'S deflussi massimi (1946-2016)

1860 1875 1890 1905 1920 1935 1950 1965 1980 1995
Anno

2010

...but annual
maxima of
daily outflow
are constant
because of a
combination of
the effect of
upstream
reservoirs and
ELER
regulation




The Olginate dam at the Como Lake’s outlet increases the
discharge capacity, with a final neutral effect on extremes

B Image © 2018 DigitalGlobe
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Conclusions

* New data series collected confirm results of previous studies for the Italian
Alps indicating a stationarity of annual rainfall and a significant decrease of
runoff, about -1.45 mm/year at regional scale

* Increased hydrological losses can be attributed to both climate warming but
also to expanded forested areas enhancing evapotranspiration losses.

* Weak teleconnection with sunspot and AMO signals is observed

* Land use changes monitored at 7000 km? scale indicate a 20% increase of
woodland corresponding to +500 km?. They can be one of the reasons of the
decrease of flood extremes together with reservoirs upstream Lake Como

 However Lake’s regulation with Olginate dam is the reason of a neutral effect
on the trend of outflow extremes



