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Abstract

Cultural heritage (CH) is threatened by floods; however, the understanding of

exposure and vulnerability is challenging and makes risk and resilience assess-

ment rarely practiced. CH is crucial for post-disaster resilience, especially

when the local economy is based on tourism. The work presents a novel frame-

work for evaluating flood resilience, indirect impacts, and associated risk in art

cities. The exposure of CH is estimated using the number of visitors as a proxy

variable for the social appreciation. A new depth-idleness vulnerability func-

tion assigning a reopening time to flood depth is developed from post-event

reports. A resilience model is conceived to (i) describe the recovery dynamics,

(ii) estimate the indirect impacts in terms of lost visitors to CH for different

probabilistic scenarios, (iii) calculate risk, and (iv) identify mitigation actions.

The application of the model to the art city of Florence (Italy), a UNESCO site

visited by approximately 10 million people a year, shows that a medium recur-

rence interval flood requires a recovery time of 351 days and causes a loss of

10.5 million visitors. The annual average number of lost visitors is 88,000

approximately. Resilience can be increased by accelerating the reopening and

by reinforcing the attractivity of the city.
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1 | INTRODUCTION

Consequences of natural hazards have been increasing in
recent decades (Botzen et al., 2019; Coronese et al., 2019)
and floods are among the most frequent and damaging
events worldwide. Cultural assets are severely affected by
floods and are likely to be increasingly threatened by cli-
mate change effects (Cassar & Pender, 2005; Fatori�c &

Seekamp, 2017; Gizzi, 2021; Marzeion & Levermann, 2014).
International disaster risk reduction frameworks
(UNISDR, 2015; United Nations, 2005) observe the relation-
ship between different aspects of culture, risk reduction,
and resilience, for promoting risk management to preserve
cultural assets. Cultural heritage is broadly classified as
either tangible, that is, consisting of buildings, historic
places, monuments etc., or intangible, that is, referring to

Received: 27 May 2021 Revised: 21 October 2021 Accepted: 1 February 2022

DOI: 10.1111/jfr3.12794

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Journal of Flood Risk Management published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd.

J Flood Risk Management. 2022;e12794. wileyonlinelibrary.com/journal/jfr3 1 of 15

https://doi.org/10.1111/jfr3.12794

https://orcid.org/0000-0002-8096-7435
https://orcid.org/0000-0003-0304-0289
mailto:chiara.arrighi@dicea.unifi.it
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/jfr3
https://doi.org/10.1111/jfr3.12794


oral traditions, performing arts, social practices, rituals etc.
(World Bank Group, 2017). Henceforth the term cultural
heritage (CH) will refer to tangible CH.

CH plays a fundamental role in post-disaster resil-
ience of communities and art cities (Galloway
et al., 2020; Genova et al., 2020; GFDRR, 2020;
Jigyasu, 2016; Kumar, 2020). One of the definitions of
resilience is “the ability of a system, community or soci-
ety exposed to hazards to resist, absorb, accommodate to
and recover from the effects of a hazard” (Heinzlef
et al., 2020; McClymont et al., 2020; UNISDR, 2015).
Post-event recovery is facilitated by the revenues gener-
ated from tourism activities, although this depends on
the magnitude of impact as well as the efficiency of com-
munity participation and governance (Min et al., 2020;
Nair & Dileep, 2020; Rossell�o et al., 2020).

Quantitative approaches for assessing flood resilience
are commonly based on indicators or simulations which
evaluate system performances, during or in the immedi-
ate aftermath of the event, starting from flood models
(Coates et al., 2016; Pregnolato et al., 2016; Schinke
et al., 2016). However, conceptual and theoretical frame-
works are more popular and highlight difficulties in
operationalizing resilience (McClymont et al., 2020).
Resilience is often examined for infrastructures
(Argyroudis et al., 2020; Joannou et al., 2019; Patel
et al., 2020) and urban areas (Chen & Leandro, 2019;
Leandro et al., 2020; Sajjad et al., 2021) only to cite a few
examples. Recently, machine learning techniques have
been adopted to predict climate resilience based on socio-
economic indicators (Abdel-Mooty et al., 2021;
Feldmeyer et al., 2021) Models which quantify the resil-
ience in terms of medium to long-term recovery dynam-
ics are rarely found in literature especially related to CH
(Song et al., 2017). Resilience and risk are strongly linked
together, in fact, resilience is related to coping capacity
defined as the ability to anticipate, cope with, resist, man-
age and recover from disasters (UNISDR, 2015).

The commonly accepted approach for risk analysis
encompasses hazard, exposure, vulnerability, and capac-
ity assessment (IPCC, 2012; Koks et al., 2015). The quan-
tification of resilience is thus crucial to obtain a complete
understanding of risk.

CH is a peculiar asset which poses a challenge in the
modeling of vulnerabilities, exposed values, and recovery
costs within a “standard” risk assessment procedure. In
part, the vulnerability of heritage assets relates to their
physical characteristics, including quality of construction
and conservation. Firstly, A major difficulty in flood vul-
nerability modeling lies in linking water depth to a rela-
tive or absolute physical loss which is usually described
by vulnerability stage–damage curves (Arrighi
et al., 2020; Cammerer et al., 2013; Gerl et al., 2016;
Molinari et al., 2020). In fact, characteristics like

materials, age of construction, finishing levels, etc. are
specific for each asset and do not allow a generalization
through stage–damage functions (Trizio et al., 2021). The
physical contact with floodwaters causes direct damages
to CH which can be irreversible or might take decades to
be repaired (Bellucci, Ciatti, & Frosinini, 2016). Besides
direct impacts to CH, also consequences that occur later
in time, that is, indirect (Arosio, Martina, Creaco, &
Figueiredo, 2020; Delalay, Ziegler, Shrestha, & Gopal,
2020; Gao, Geddes, & Ma, 2020; O'Donnell & Thorne,
2020), are relevant for the economy based on tourism.

Secondly, cultural heritage has an intangible value
which includes the historical, spiritual, esthetic, and
social values that constitute the cultural significance of a
property (Appiotti et al., 2020; Spennemann &
Graham, 2007). Thus, the exposure of cultural heritage is
hardly monetizable (Holický & Sýkora, 2010), although
significantly related to many profitable economic activi-
ties which generate revenues and employment (Bowitz &
Ibenholt, 2009; CHCfE, 2015). Then, the definition of
replacement cost does not easily apply to CH
(Vecvagars, 2006), in fact, when regular infrastructure is
affected, repair or reconstruction is usually possible; but
impacts on cultural heritage can be irreversible and can
also lead to economic losses, including loss of livelihoods
(World Bank Group, 2017). The assessment of disaster
losses on cultural heritage has not received enough atten-
tion so far and is considered quite challenging due to the
multidimensionality of the problem (Rom~ao et al., 2020;
Rom~ao & Paupério, 2021; UNDP, 2013). Rom~ao and
Paupério (2021) reviewed (i) the techniques used in envi-
ronmental economics to valuate cultural heritage and
(ii) the three components of cultural heritage value
(extractive use values, non-extractive use values, non-use
values).

As a consequence of the difficulties in quantifying
exposure and vulnerability, flood risk assessment to cul-
tural heritage has been mostly addressed in a qualitative
way by categorizing and ranking assets in terms of vul-
nerability and performing exposure analysis at national
or site scale (Arrighi, Brugioni, et al., 2018; Figueiredo
et al., 2019; Garrote & Escudero, 2020; Miranda &
Ferreira, 2019; Vojinovic et al., 2016; Wang, 2015). Flood
vulnerability models for CH, that is, stage–damage func-
tions are rarely found in literature (Figueiredo
et al., 2021), since only recently the Sendai Framework
has identified the promotion of resilient CH under the
broad priority action areas. Rom~ao and Paupério (2021)
proposed an indicator to estimate direct and indirect eco-
nomic losses to CH after an event based on the expected
time to recover, non-extractive use values and non-use
values, recovery costs, GDP and gross value added associ-
ated to CH sector with an application to the city of Lorca
(Spain).
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Few countries have begun cataloging cultural assets,
mapping hazard risks, and placing them in the context of
historical knowledge and traditions (World Bank
Group, 2017). Besides the understanding of risk, pre-
paredness and contingency plans should be prepared to
enable rapid response, increase capacity, and ensure an
effective recovery. In this context understanding the resil-
ience of a community strongly dependent on cultural
tourism is key.

The aim of this work is to investigate the interconnec-
tion between resilience, indirect impacts, and risk in art
cities exposed to floods, that is, in a context with a high
concentration of CH which attracts many visitors and
feeds the local economy. Without the ambition of
describing the intangible total value of CH and vulnera-
bility in terms of direct losses, since no method is cur-
rently able to provide an exhaustive measure of the
economic losses to CH (Rom~ao & Paupério, 2021), the
work introduces a proxy for socio-economic value of
exposure and a new depth-idleness vulnerability function
for CH built upon a review of post-flood reports in art cit-
ies or cultural attractions. The socio-economic proxy
adopted for CH value is correlated to both non-use
values, that is, social appreciation, and extractive use
values, that is, revenues, and is not fully able to capture
other aspects such as spiritual, symbolic, historical values
of CH. The depth-idleness function links vulnerability
and capacity, since time is an intrinsic factor of resilience.
The depth-idleness function is used as input for the resil-
ience model developed in this work, which simulates the
recovery dynamic expressed as the number of people
coming back to visit cultural attractions. The time
required to bounce back to a certain percentage of num-
ber of visitors of the pre-event situation is used as a met-
ric for resilience. The number of lost visitors per event
and the annual average number of lost visitors are
selected as a metric of indirect impact and risk, respec-
tively. A demonstration of the model is provided for the
art city of Florence (Italy) which hosts about 370,000
inhabitants and more than 10 million tourists each year
before the COVID pandemic restrictions.

The manuscript is structured as follows: Section 2
describes the method including the flood hazard model,
the exposure, vulnerability and resilience models;
Section 3 introduces the case study; Section 4 describes
and discusses the results; Section 5 draws the conclusions
of the work highlighting strengths and limitations of the
approach and further research perspectives.

2 | METHOD

The method adopted in this study combines (i) a flood
hazard model, (ii) an exposure model, (iii) a flood

vulnerability model, (iv) a resilience model, (v) the calcu-
lation of recovery, indirect losses, and risk metrics. The
flowchart in Figure 1 illustrates the connection between
the components of the method (white ellipses) and the
most significant input/output data in the workflow (gray
rectangles). The hazard model provides flood depth map
that are the input for exposure model of CH. For each
exposed CH, a flood vulnerability model yields the time
required to reopen to the public, which feeds a resilience
model capable of simulating the temporal dynamics of
the number of visitors after the flood event. The compari-
son between normal and post-event number of visitors
allows calculating the loss of visitors during the recovery
time span for each flood event. Risk is obtained by com-
bining losses, resilience, and probability of the flood
event.

Exposure of CH is here described by the position of
the CH with respect to the flooded area and by a proxy
value that exemplifies the social appreciation, interest
and preference of tourist, that is, the yearly number of
visitors (see Section 2.2).

The vulnerability model developed in this study, con-
sists in a depth-idleness function, which assigns to flood
depth a damage in terms of time required to reopen again
to the public the cultural attraction (see Section 2.3).

In this work, flood resilience is defined as the capac-
ity of the art city to recover and bounce back to the previ-
ous state of the system after the shock, that is, the flood.
In this study the state of the system is described by the
number of open CH buildings and the number of visitors
in a time scale of the order of a year after the flood. As
shown in Figure 1 the resilience model yields the recov-
ery dynamics which, on the one hand, provides a key
metric of resilience itself, that is, the time required to
restore normal conditions and, on the other hand pro-
vides an input to the assessment of indirect losses and
risk. The resilience model is described in detail in
Section 2.4.

2.1 | Flood hazard model

The hydraulic model here adopted to simulate the propa-
gation of the event in the floodplain area is HEC-RAS
v5.0.7. For this study, a 1D/2D model is set up, where the
water profile in the channel is computed through a stan-
dard solver of the 1D general equation of unsteady flow
and the floodplain is described by 2D shallow water
equations (SWE). The SWE describe the motion of water
in terms of depth-averaged 2D velocity and water depth
in response to the force of gravity and friction. These
equations represent the conservation of mass and
momentum, and they are solved with the finite-volume
method.
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The outflow from the riverbanks is modeled through
a set of lateral weirs connecting river and floodplain and
the flow over structure is determined using the weir
equation.

The flood-prone area is discretized into grid cells,
where each cell uses the underlying terrain data at 1 m
resolution. Buildings are considered as waterproof blocks.
For each cell and cell face HEC-RAS generates a detailed
hydraulic property table (elevation-volume relationship,
elevation-area, etc.). The water can move to any direction
based on the given topography and the resistance to the
flow controlled by the land use type and associated Man-
ning's coefficient. Four scenarios with exceedance proba-
bilities of 1/30, 1/100, 1/200, 1/500 are simulated. For
each probabilistic scenario, the hydrograph duration
yielding the largest inundated area has been selected.

The results of the hazard model are the flood depth
maps of the study area corresponding to the selected
probabilistic scenarios.

2.2 | Crowd-sourced flood exposure
model

The exposure analysis is carried out by intersecting flood
maps and the polygonal shapefile of CH for each sce-
nario. Exposure is also the value of the asset affected by
the flood, for example, for residential buildings the

market value or construction cost (Molinari et al., 2020;
Paprotny et al., 2021). The value of CH is hardly monetiz-
able, however the social appreciation and value of a cul-
tural attraction, for example, a museum, a noble palace, a
church etc. is demonstrated by the number of people vis-
iting it, especially in art cities where tourists have to
choose among several possibilities during their stay.
Moreover, the number of yearly visitors is not only a
proxy of intangible social value of CH (part of non-use
values), but also of the economic revenues of tickets and
related services, for example, restaurants, accommoda-
tions etc (extractive use values). The combination of a
degree of loss and the social value of exposure in terms of
visitors to CH allows for estimating indirect impacts
occurring days/months after the flood (Sections 2.3
and 2.4).

Data about the yearly number of visitors are usually
made available by the institutions in charge of managing
the cultural attraction. However, some locally managed
attractions do not publish the data. A regression analysis
is thus used to firstly define the parameters of a function
which describes the number of annual visitors based on
crowd-sourced review data and secondly to estimate the
number of visitors for those attractions without public
open data.

Assuming the standard form of a linear equation
Vi,0 = α�r + β, where r is the independent variable and
Vi,0 the predicted variable, the regression parameters (α

FIGURE 1 Flowchart of the methodology for modeling resilience, indirect impacts and risk to cultural heritage. Ellipses stand for

activities; rectangles represent data flow; the two boxes with thick contour are the results of the workflow
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the slope and β the intercept) are obtained by minimizing
the sum of squared residuals. In this analysis, r is the
annual number of online reviews to cultural attractions
and Vi,0 is the average number of visitors obtained by offi-
cial reports.

2.3 | Depth-idleness vulnerability model

Against the direct losses to CH which occur because of
the physical contact of water and the building/artwork,
art cities are often constructing preparedness plans which
allow for moving artworks to safe elevations after a flood
early warning. Nevertheless, in absence of retrofitting or
prevention measures, cultural buildings can be affected
and remain idle for the time required to repair/restore
the structure. For low water depths, for example, of the
order of few centimeters, a deep cleaning and safety
check can be enough to reopen the attraction, while for
high water depths above 4–5 m, such as in the 2002 Elbe
flood in Dresden, the process may take months. A review
of flood events occurred in art cities and affecting
museums and cultural heritage has been carried out to
gather information about the water depths, reopening
times and event description. Post-event reports, books
and newspapers have been used for the review and
sources are available as Data S1. The correlation between
flood depth and reopening time is here called depth-
idleness vulnerability function and provides a synthetic
description of the relationship between vulnerability, that
is, potential damage, and capacity, that is, ability to cope
with the damages.

A linear regression model is selected to describe the
relationship between flood depth h and re-opening time
called TO

TO ¼TO hð Þ¼ μ �h ð1Þ

where μ is the slope obtained by the least squares method
and the intercept is put to zero in the assumption that if
the cultural attraction is not flooded, that is, h = 0, there
is not any forced closure.

2.4 | Resilience model

In this study, indirect impacts are sensitive to the recov-
ery speed of the system, that is, the sooner the attraction
reopens the lower the impact expressed in terms of visi-
tors lost. The evaluation of indirect impacts is thus
strongly connected to the concept of resilience.

The response of a system to a shock is measured
through a state variable versus time. The shock is

intended here as the natural hazard (i.e., the flood) which
causes the sudden drop of the state variable. In case of an
art city with significant cultural heritage, the measures of
the state of the system are assumed to be the number of
open CH buildings and the number of visitors to
CH. Indirect losses can be thus expressed in terms of visi-
tors lost during the time span the systems recovers. In
fact, if CH is flooded, although movable artworks can be
displaced and saved from damages, it is not accessible to
visitors for a certain time (Section 2.3).

The resilience model initializes with the average daily
number of visitors Vi,0 in normal conditions obtained
with the method described in Section 2.2 and all CH open
to the public. The application of the vulnerability curve
(Equation (1)) for each flood scenario provides TO for
each building. The overall number of open attractions at
t, MO(t) in the art city is:

MO tð Þ¼
Xn
i¼1

Mi tð Þ ð2Þ

where i is the ith attraction and n is the total number of
CH attractions in the site. Each CH attraction can be
either open or closed according to the Boolean expression
of Equation (3)

Mi tð Þ¼
0 if t<TOi

1 if t≥TOi

�
ð3Þ

However, the willingness to visit the site reduces if only
part of the CH is accessible. In other words, there is a sort
of delay in coming back after a flood event because the
art city loses its attractivity (Dube & Nhamo, 2020;
Rossell�o et al., 2020). Attractivity A(t) of the art city is
here defined as

A tð Þ¼Vact

Vpot
ð4Þ

where Vact is the number of actual visitors at t after the
shock, that is, is the sum of the business-as-usual visitors
Vi,0 to the open attractions m

Vact tð Þ¼
Xm
i¼1

Vi,0Mi tð Þ ð5Þ

And Vpot is the potential number of visitors if all the
attractions are open in business-as-usual conditions, that
is, when m in Equation (5) is equal to n, the total number
of CH attractions in the site. The attractivity A(t) is
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maximum when all CH are open and Equation (4) equals
(1), that is, when Vact = Vpot.

The real dynamic of visitors V(t) is thus a function of
A(t) according to a power law,

V tð Þ¼Vpot A tð Þk ð6Þ

where k is an exponent determining the weight of the
attractivity factor.

The loss in terms of visitors at each time step Vloss (t)
is then the difference between Vpot and V(t)

Vloss tð Þ¼Vpot�V tð Þ ð7Þ

The overall impact L(TR) of a scenario with annual
exceedance probability 1/TR, that is, return period TR,
depends on the overall recovery time in the inte-
gral form:

L TRð Þ¼
ZTend

Tshock

V loss TR, tð Þdt ð8Þ

where Tend is the time where the number of visitors
bounces back to pre-shock conditions, that is, the end of
the recovery phase. Tshock is the time when the flood
occurs. The analysis described above may be repeated for
several flood scenarios corresponding to assigned probabil-
ity levels. If the estimation of the overall impact is carried
out for scenarios with different TR the risk expressed as
annual average number of visitors lost can be estimated as

Risk¼
Z1

0

L TRð Þd 1
TR

� �
ð9Þ

Since the model cannot easily be validated without spe-
cific post-event data, a sensitivity analysis of the esti-
mated risk with respect to the parameters μ (slope of the
vulnerability function) and k (attractivity) is performed.

Although resilience and risk are strictly connected in
the model, the number of resilience curves which yields
the same value of L(TR) and risk are infinite. Resilience is
not only the capacity of recover and bounce back to pre-
vious normal conditions, but to achieve this goal in a
timely manner, that is, the slope of the resilience curve
matters. Synthetic indicators for the recovery speed in
this work, besides the total recovery time tend, are t30%,
t60%, t90% which represent the time (days) required to
bounce back to 30%, 60% and 90% value of the state vari-
able in normal conditions, that is, the pre-event number

of visitors. Partial recovery time indicators are considered
crucial for supply chain systems, especially those where
competitors in the market offer similar products, for
example, other art cities. In fact, visitors may be less loyal
to the system when a disruptive event diminishes the sys-
tem's capability to satisfy their demand. Visitors may
need to cancel their stay should their demand, that is, a
sufficient number of open attractions, not be met in a
timely fashion (Ni et al., 2018).

3 | CASE STUDY

The method is applied to the city of Florence (central
Italy). The historical city center of Florence has been
listed as a UNESCO World Heritage since 1982. The last
important flood event in the area was the 1966 flood
which caused 38 casualties, severe damage to many of its
most precious art works and threatened the economic
and social viability of the city and its residents (Galloway
et al., 2020) causing a great emotional impact in the
whole international community (Kumar, 2020;
Nencini, 1966). Before the restrictions imposed by the
pandemic, the city was yearly visited by about 10 million
tourists, with negligible seasonal fluctuations. The study
area hosts 175 buildings classified as CH that are pro-
vided as a shapefile by the District of the Northern
Appennines, the authority in charge of flood risk map-
ping in the Arno river catchment.

The District Authority also provides the river cross
section including bridges and weirs needed for the 1D
hydraulic modeling of the urban reach and the scenario
hydrographs used as upstream boundary conditions. The
floodplain is described by a 1 m resolution, 0.15 m verti-
cal accuracy, LiDAR derived, Digital Terrain Model freely
available in the regional cartographic data portal. Man-
ning's coefficient in the riverbed is in the range 0.03–
0.04 m�1/3/s. In the floodplain it has been set to 0.14 and
0.09 m�1/3/s for dense and sparse urban areas respec-
tively, according to Land Use Land Cover data. The com-
putational grid counts 800 thousand cells with a size
of 8 m.

The data about the number of annual visitors Vi,0 is
retrieved for 48 out of 175 attractions for the year 2018
from the reports by the Regional Authority (Regione
Toscana, 2019). The online reviews sources for the fitting
are TripAdvisor and Google Maps.

4 | RESULTS AND DISCUSSION

The results of the application of the method to the case
study of Florence are presented into three sub-sections.
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Section 4.1 presents the visitors-reviews regression curve,
Section 4.2 shows the vulnerability curve for CH and
Section 4.3 describes the results of flood hazard, resil-
ience model and the estimation of indirect impacts.

4.1 | Flood exposure

The flood exposure model provides the annual number of
visitors in normal conditions based on online reviews for
all CH excluded by the annual report (Regione
Toscana, 2019). From the analysis of the sources of online
reviews to CH, the best fit was obtained by using the
annual number of TripAdvisor reviews (R2 = 0.87). The
use of Google Maps and the sum of Google Maps and
TripAdvisor reviews yielded a determination coefficient
of 0.71 and 0.80, respectively, thus they were not used.
Figure 2 shows the obtained visitors-reviews regression
curve. Circles represent the couples annual visitors-
reviews for the CH with available official data; the
dashed line is the regressed model used to estimate the
number of visitors for those CH without data. The most
visited museum with 2 million visitors and about 5000
reviews in 2018 is the Uffizi Gallery. The regression
model is sensitive to the most visited CH attractions
(three upper right points of Figure 2). If those points are
removed from the analysis, the function sharply increases
its slope and the number of visitors for the most visited
CH attraction is overestimated of about 60%. Other prox-
ies for the number of visitors to CH and or other func-
tional forms should be possibly tested and validated in
further research.

4.2 | Flood vulnerability

In this work, the vulnerability model for CH is represen-
ted by a depth-idleness linear function which assigns a
time needed for re-opening TO to the value of flood
depth, based on the analysis of post-event reports and
newspapers (Supporting Information of Figure 3).
Figure 3 shows the empirical curve obtained with
R2 = 0.90, whose equation is

TO ¼ 93:46 �h ð10Þ

For each meter of flood depth, the model estimates about
3 months, that is, 93 days, to reopen the attraction. The
data represented with a cross refers to the Ca' Pesaro
Museum in Venice affected by an exceptional high tide in
2019 and the Albertinum Fine Arts Museum in Dresden,
affected by the Elbe river flood in 2002. The first has been
excluded because the inundation triggered a fire which
slowed down the recovery. The latter has been excluded
from the regression because after the flood, the museum
underwent extraordinary renovations and re-
organizations already planned before the event which
took 72 months. Taking advantage of “forced” closure to
execute extraordinary maintenance works and renova-
tions is a common behavior which has been observed in
Venice after exceptional high tide events and also during
the 2020 Covid pandemic restrictions in Florence.

Re-opening time estimated with this depth-idleness
vulnerability function is affected by significant uncer-
tainties. First, the use of flood depth, which is a relatively
simple flood parameter but still not easy to estimate

FIGURE 2 Crowd-sourced exposure

model. The regression allows estimating

the number of yearly visitors to CH

without official data
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without uncertainty. Then, other economic, social and
political aspects play a crucial role in post-disaster recov-
ery such as resonance of the event, availability of
funding, insurance capabilities, bureaucracy etc. More-
over, the limited number of available data for the regres-
sion does not allow to draw exhaustive considerations.
More data from real events would be needed to validate
the depth-idleness vulnerability function.

4.3 | Resilience, indirect impacts,
and risk

The 2D hydraulic simulation of four hazard scenarios
provides flood maps with different return periods, that is,
30, 100, 200, 500 years. The 500 years scenario represents
the hydrologic magnitude of the historical 1966 flood.
These maps represent water depth at 1 m resolution in
the domain. Since buildings have been considered as
waterproof blocks in the simulation, a buffer of 2 m
around the CH building polygon has been drawn in order
to calculate the mean flood depth per building per sce-
nario. In this study, the presence of elevated ground
floors in CH buildings, which might reduce the actual
exposure has not been considered and quantified, but on-
site surveys to the 176 cultural buildings could be carried
out to have a more accurate understanding. Flood depth
is used as input for Equation (10). Figure 4 shows the
500 years flood scenario for Florence, the CH buildings
used to estimate the impacts and the location of historical
marble plates which identify the water depths reached in

the 1966 flood. In the map of panel (a), flood depths in
the historical city center span from about 0.5 m in the
most ancient roman district (center of the map) up to 4–
5 m in the eastern portion of the city. Figure 4(b) is the
scatter plot of simulated versus recorded flood depths.
Simulated flood depths underestimate the 1966 event
depths with a bias of 0.5 m. In fact, if the same hydro-
logic event affected the city nowadays, the flood depth
would be lower thanks to the prevention actions under-
taken in the last 50 years which reduce the inundation
volume of about 70 Mm3 (Arrighi, Rossi, et al., 2018;
Autorità di bacino del Fiume Arno, 1999; Galloway
et al., 2020).

Figure 5 shows the results of the resilience model in
terms of open CH (a) and number of visitors (b) with the
attractivity parameter k = 3. For the 30 years recurrence
interval the city is not affected by the flood. For the
100 years scenario, downstream neighborhoods are
flooded. The inundated area is 7.2 km2 with an average
flood depth of 1.3 m, only three CH buildings are affected
with a maximum reopening time for one of those build-
ings of 30 days. The visitors come back to pre-event con-
ditions in 36 days with an estimated loss of about
30 thousand visitors (Table 1).

The 200 years scenario has an inundated area of
18.7 km2 (1.4 m average flood depth) and affects 118 out
of 176 CH buildings. For this hazard scenario the time
needed to come back to a normal status is less than
1 year, that is, 351 days, with an estimated loss of visitors
of about 1 million (Table 1), which is about 10% of the
annual number of visitors in 2018. For the 500 years

FIGURE 3 Depth-idleness

vulnerability function for cultural

heritage. Two points have been excluded

from the regression
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flood, the worst scenario considered, the inundated area
reaches 24.7 km2. One hundred and forty three CH build-
ings are affected, and 393 days are needed to restore the
normal situation, the number of visitors lost is about 1.3
million (Table 1). From the comparison of panels (a) and
(b) of Figure 5 it is possible to see that the dynamics of
reopening of attractions is smoother than the dynamics
of the number of visitors. This is due to the attractivity of
the site, driven by a relatively small number of CH which
have millions of visitors each year (The Uffizi Gallery,
the Cathedral, the Gallery of Accademia). In fact, when
the Uffizi gallery reopens (2 m flood depth for

TR = 500 years, 188 days of closure) the number of visi-
tors in the city has a sharp increase.

The application of Equation (9) provides the risk in
terms of annual average loss, which is equal to 87,564 lost
visitors, about 0.9% of the visitors recorded in 2018.
Although the estimated loss seems negligible, if we con-
sider that each visitor spends about 150 € per day in Flor-
ence (IRPET, 2019), the indirect economic loss is about
13 M€/year, that is, 25% of the risk estimated for the city
by considering only direct tangible losses to residential
buildings and commercial activities (Arrighi, Brugioni,
et al., 2018).

FIGURE 4 Flood hazard results.

(a) 500 years flood depths, CH exposure

and location of historical marble plates,

(b) validation of flood hazard model

against the historical flood depths
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Although validation of flood risk models is widely
acknowledged as a fundamental step, it is particularly
challenging for cultural heritage assets due to the lack of

post-event data and the difficulties in valuing monetary
costs. In this work the depth-idleness vulnerability func-
tion has been empirically derived, however the slope

FIGURE 5 Results of the resilience

model for the three hazard scenarios

affecting CH. Number of open CH

attractions MO after the flood event (a);

number of visitors V after the flood (b)

TABLE 1 Estimated number of lost visitors L(TR), time required to reach partial recovery of the system 30%–60%–90% and time required

for total recovery come back to normal status tend for the simulated flood hazard scenarios

Return period
TR (years) Visitors lost L(TR) t30% (days) t60% (days) t90% (days) tend (days)

30 0 0 0 0 0

100 32,252 5 8 34 36

200 10,462,373 106 187 267 351

500 12,930,684 153 190 329 393
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parameter μ is affected by the quantity and quality of
available data. Moreover, the resilience model includes
the attractivity parameter k which delays the recovery.

A sensitivity analysis has been carried out to under-
stand how the estimated risk and recovery time are modi-
fied when μ and k are perturbed one at a time. The
results are shown in Figure 6 in terms of number of visi-
tors V after the 200-years flood event, with the slope of
depth-idleness vulnerability curve μ ± 15% (dots) and
with the attractivity parameter k ± 15% (line).

A decrease of 15% in the slope of the vulnerability
curve reduces tend of about 50 days, with an almost sym-
metric behavior for the 15% increase. The variation of
k does not modify tend but modifies the number of visitors
at t. As can be observed by comparing the two sensitivi-
ties, the change in μ causes a horizontal shift of the resil-
ience curve, towards the right or left side of the graph
when μ increases or decreases, respectively; while the
change in k causes a vertical shift of the resilience curve,
upward or downward directed when k decreases or
increases, respectively. Moreover, the sensitivity to
k decreases with time, since the attractivity of the art city
tends to one when the number of visitors increases
(Table 2). On the contrary, the sensitivity to μ is less sig-
nificant in the first 100 days after the flood event and
then increases.

The variation of risk in terms of annual average num-
ber of lost visitors to CH and total and partial recovery
times with the perturbed parameters are summarized in
Table 2. The slope of the depth-idleness curve μ is the

most sensitive parameter for the estimated risk, in fact
the elasticity, that is, the ratio between variation of the
parameter and variation of risk is almost 1, while the
elasticity to k is 0.4. The partial recovery time t30% is par-
ticularly sensitive to a change in the parameter k, which
is on the contrary negligible for tend. The partial recovery
times t60% and t90% are particularly sensitive to the param-
eter μ.

The significant influence of the parameters μ and
k on the estimated recovery time, indirect scenario
impacts and risk highlights two key actions to be under-
taken by local stakeholders and institutions in the after-
math of a flood. The first one is to speed up the re-
opening of CH attractions, especially those attracting
large amounts of visitors to reduce tend. The second one,
is to increase the attractivity by inviting people to visit
the city in order to contribute to the recovery. In this
sense, the parameters μ and k do not have a constant
value, but depend on the capacity of the art city to
recover, that is, its coping capacity and resilience, which
depend on the amount of resources available, the priori-
ties of stakeholders and on the worldwide resonance of
the event (e.g., crowdfunding, insurance reimbursement),
as occurred in Florence after the 1966 flood
(Kumar, 2020). The sensitivity analysis also suggests that
working on increasing the attractivity, that is, by reduc-
ing k, in the immediate aftermath of the flood and then
focus on a fast reopening is the best resilience strategy.

In our model we assumed that the integration interval
to estimate risk ends at tend, however an art city can be

FIGURE 6 Sensitivity of the

resilience model for TR = 200 years to

the parameters μ (dots) and k (lines)
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able to reach a new final state in which the number of
visitors exceeds the pre-shock conditions, thus the indi-
rect losses reduce in a longer time span (t > tend).

5 | CONCLUSIONS

Flood impacts to cultural heritage are rarely addressed in
literature although their social and economic relevance is
widely recognized. This work developed a new methodol-
ogy for assessing the resilience to floods, indirect impacts
and risk in art cities with a demonstration in the city of
Florence, a UNESCO World Heritage hosting 176 cultural
heritage buildings and millions of visitors each year.

The adopted methodology follows the common
approach of combining hazard, vulnerability, exposure,
and capacity to assess risk, but with a quantification of
resilience, indirect impacts and an original declination of
the concepts of exposure and vulnerability. With respect
to existing works that examined flood risk to CH by com-
bining hazard maps and heritage typologies as main
parameter for a qualitative vulnerability classification at
national or regional scale (Figueiredo et al., 2019;
Garrote & Escudero, 2020), this work focuses on the
intermediate scale of site where numerous CH is present,
that is, an art city. The resilience model here introduced
allows to quantify the system dynamics which is crucial
to evaluate the time needed to recover after an event, this
aspect has been rarely investigated for CH. In the work
by Rom~ao and Paupério (2021), recovery time is assumed
based on post-earthquake understanding of structural
damages to CH, as well as recovery costs which are based
on the municipal Master Plan. The application to the city
of Florence also provides a quantitative demonstration of
the interconnection between indirect impacts, resilience
and risk, which is often addressed by means of concep-
tual and theoretical frameworks rather than with opera-
tional models (McClymont et al., 2020). The use of the
number of visitors to each CH to approximate the social
appreciation of each CH attraction, never used before for

flood impact assessment, although not exhaustive of the
different components of CH value (Rom~ao &
Paupério, 2021), provides a metric of intangible value
well correlated with both non-use values (e.g., social
value) and extractive use values (e.g., tourism revenues).
The depth-idleness flood vulnerability function, which
assigns to flood depth a re-opening time, is again a novel
aspect of this research which might complement recent
approaches of ultra-detailed stage–damage functions
developed for a single cultural building (Figueiredo
et al., 2021). The conclusions that can be drawn from the
application to the case study are:

i. A flood event like the historical 1966 flood would
cause an estimated loss of 12.9 million visitors and a
total recovery time of 393 days.

ii. The estimated risk in the study area is 87,564 lost vis-
itors per year (0.9% of 2018 visitors). This value can
be turned into a monetary risk of about 13 M€/year,
if the average daily expenses of visitors are
considered.

iii. Resilience can be increased by accelerating the re-
opening of CH attractions and by increasing the
attractivity of the art city, as highlighted by the sensi-
tivity analysis.

The main limitations of the proposed method which
should be addressed by future research are:

i. The estimation of the number of visitors to CH by
means of the regression against reviews, which are
subject to changes in time, such as in case of restric-
tion to travels or site promotion can be well corre-
lated to revenues but less correlated to social value,
that is, a decrease of visitors does not imply a loss of
CH non-use value. Moreover, the regression model
here obtained is site specific, although the method
could be transferred to other case studies. Neverthe-
less, the number of visitors is a good state variable to

TABLE 2 Risk sensitivity and

resilience sensitivity for the scenario

TR = 200 years with respect to the

parameters μ and k

μ = 93.46 k = 3

μ + 15% μ � 15% k + 15% k � 15%

Risk sensitivity

Annual average number of lost visitors +15.14% �14.74% +5.49% �6.53%

Resilience sensitivity

tend +13.96% �15.95% 0.00% 0.00%

t30% +18.55% �13.99% +36.75% �7.71%

t60% +14.97% �14.97% +9.25% �9.90%

t90% +13.14% �15.71% 11.50% �4.38%
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simulate the recovery dynamics in the resilience
model.

ii. The depth-idleness vulnerability function is obtained
by a limited number of post-event data and is
affected by several sources of uncertainty besides the
hydrologic ones, such as funding availability, prioriti-
zation, and allocation following a disaster. More data
would be necessary to validate the model and other
variables could be taken into account to estimate re-
opening times.

Further studies should also focus on the estimation of
direct impacts to CH and on more detailed exposure anal-
ysis at single building scale to detect elevated ground
floors in order to obtain a better understanding of direct/
indirect flood risk. Prolonging the resilience model after
the final recovery time would also allow for simulating
adaptive art cities capable of bouncing back to better pre-
event conditions.
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