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Effect of bank slope and ambient groundwater discharge on hyporheic transport and biogeochemical reactions in a compound channel 
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Abstract: The hyporheic zone is the volume within streambed where stream water and surface water mix. In a compound channel, as floodplains are submerged, solutes in the water column enter the hyporheic zone and react with the solutes upwelling from the groundwater. Those reactive processes, such as aerobic respiration, nitrification, and denitrification, still need to be clarified. In this paper, a 3D hydrodynamic model coupled to a 2D groundwater and biogeochemical model was applied to investigate the effect of bank slope angle and ambient groundwater discharge on such processes. A denitrification zone was found below the floodplain for bank slope angle = 90°, being elongated in the horizontal direction with smaller angles. Furthermore, a lower angle of the bank slope decreased N entering the streambed and increased nitrogen removal. A decrease in ambient groundwater affected negatively both aerobic respiration and denitrification reactions. The model becomes a source of NO3 at ambient groundwater flows less than -0.9 m/d. At the end, those results demonstrated that bank slope angle and ambient groundwater discharge significantly affect solute transport and biogeochemical processes in the hyporheic zone of a compound channel.
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INTRODUCTION 
Lowland rivers are usually shaped as compound channels, which consist of a main channel and one or two floodplains [1]. During the dry season, water flow is restricted to the main river, however during flooding seasons, water fills even the floodplains [2] which serve vital ecological and biological activities [3]. Despite the prevalence of compound channels in natural rivers and waterways [4], the current understanding of hyporheic transport and biogeochemical reactions in compound channels is still insufficient.
The hyporheic zone (HZ) is the volume beneath and next to a river where surface water and ground water interact [5, 6], which is regarded as a biogeochemical hot spot in the river system [7]. This mixing improves the movement of nutrients, contaminants, energy, oxygen, nitrogen, and carbon in riverine systems [8-10]. Typically, the hyporheic zone demonstrates a number of complex physical, chemical, and biological processes [11-13] that are influenced by a number of elements, such as riverbed topography [14] and groundwater hydrological conditions (e.g., groundwater discharge). The head distribution and hyporheic flow patterns are affected by geometric features of the compound channel, such as the angle of the bank slope [15], which may result in more complex biogeochemical processes [16]. When groundwater discharge increases, the depth and volume of the HZ are reduced. The magnitude of ambient groundwater flow influences HZ extension [17].

River systems rely on denitrification (DN) by microbes to eliminate nitrate (NO3) [18, 19]. By consuming oxygen and nitrate, the aquatic ecosystem decomposes organic carbon (DOC), which is essential to river ecology. Higher oxygen concentrations contribute to the occurrence of aerobic respiration (AR), whereas the dominance of microbial respiration hinders the denitrification reaction. The concentration of dissolved organic carbon (DOC), ammonium (NH4+) and nitrate in a streambed determine whether it is a source or sink of nitrate [20]. The shape of a compound channel considerably improves the mixing of surface and groundwater [15], resulting in a substantial biogeochemical transformation of solutes in the hyporheic zone, including denitrification [20, 21]. Due to the increased sediment-water interface area and the greater advective delivery of reactive solutes, the submerged floodplain of a compound channel has a denitrification rate that is 3 to 24 times higher than that in the dry season [22, 23]. In instance, while the denitrification potential of floodplains has been recognized for some time, the denitrification capacity of the entire compound channel during floods remains uncertain. In addition, the interaction between the main channel and the floodplain, as well as the effect of ambient groundwater flow on denitrification in the hyporheic zone of a compound channel, require additional study.
A numerical analysis was conducted to enhance the current understanding of hyporheic transport and biogeochemical reactions in a compound channel. Initially, the flow in the channel was simulated using a 3D computational fluid dynamics (CFD) model, and the numerical results were compared with the experimental data collected in a laboratory physical model. The simulated channel bed pressure was combined with a groundwater model applied to a 2D domain representing a porous medium placed below the compound channel's cross-section. Finally, the 2D flow model was linked to a numerical model of solute transport in groundwater and a biogeochemical model simulating reactive processes in the groundwater domain. To determine the effects of channel geometric features, such as bank slope angle and ambient groundwater discharge (Table 1), several flow scenarios were investigated (Figure 1). In this study, aerobic respiration and denitrification in the hyporheic zone were taken into account as biogeochemical processes. The final objective of the study was to address the following unanswered questions: (1) Which mechanisms occur in the hyporheic zone beneath a compound channel that involves aerobic respiration, nitrification, and denitrification? (2) How do differences in the bank slope angle and ambient groundwater flow influence those biogeochemical processes?
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Figure 1. Sketch of the compound river aerobic zone, showing the gaining condition and losing conditions in which the main channel bank slope angle is equal to: (a) 90° (b) 60°, (c) 45°, and (d) 30°.

Table 1 Parameters of the extended numerical model for nitrogen cycling
	Model parameters
	Value
	Description

	S [°]
	90, 60, 45, 30 (4 values)
	Bank slope angle

	qbot [m/d]
	-1.0~ +1.0 (41 values, interval 0.05)
	Ambient groundwater discharge

	K [m/s]
	0.0005
	Hydraulic conductivity

	θ (−)
	0.3
	Porosity

	CDOC,0 (mg/L)
	60
	In-stream carbon concentration

	CO2,0 (mg/L)
	10
	In-stream oxygen concentration

	CNO3,0 (mg/L)
	1
	In-stream nitrate concentration

	CNH4,0 (mg/L)
	0.05
	In-stream ammonium concentration

	kDOC (s−1)
	5 ×10−6
	DOC decay constant

	kn (L mg−1 s−1)
	5 ×10−6
	Nitrification rate

	CNO3,lim (mg/L)
	0.5
	Limit nitrate concentration

	CO2,lim (mg/L)
	1
	Limit oxygen concentration



MATERIALS AND METHODS
Create the paper using MS-Word
The sketch of the flow processes (Figure 2) can be divided into two parts. First, the 3D hydrodynamics model was solved with ANSYS Fluent using Reynolds-averaged Navier-Stokes (RANS) equations with Reynolds Stress Model (RSM) turbulence closure scheme. This approach has been commonly used to simulate hyporheic exchange in two and three dimensions, and the RSM model was used to accurately simulate compound channel hydrodynamics [15, 24]. The resulting pressure distribution along the bed was then used as a boundary condition at the sediment-water interface (SWI) for pore water flow within the hyporheic region. Second, the pore water flow and solute convective dispersion reaction processes in the riverbed are simulated. Therefore, the nitrogen cycle model can describe the biogeochemical processes in the compound river.
The channel flow model domain was 24 m long and 1.2 m wide (Figure 2a). The floodplain was 0.2 m high and 0.6 m wide. The discharge was set at 50 L/s; the water depth in the main channel was 0.4 m. The inlet boundary condition was established as an inflow mass with normal direction, and at the outlet an outflow boundary condition was assigned. A no-slip wall condition was applied to the riverbeds and banks.
The subsurface flow model domain was 1.0 m deep and 1.2 m wide. The distribution of the pressure at the channel bed calculated by the RANS model was applied as the upper boundary condition for the groundwater model. Both the left and right vertical side were treated in the same way as zero flow boundaries. At the groundwater bottom, a Darcy velocity with an ambient groundwater magnitude qbot was assigned. The ambient groundwater discharge is specified as -1 m/d ~ +1 m/d to represent the losing condition, neutral condition, and gaining condition, respectively.
Numerical Modeling
Surface water model
Ansys FLUENT was used to model the 3-D steady-state turbulent flow. The software solves Reynolds averaged Navier-Stokes (RANS) equations of mass and momentum conservation for an incompressible fluid:


                                                                                                                                               

                                                                                                     
where t denotes time, u denotes velocity, p denotes pressure, μ denotes the dynamic viscosity coefficient (μ = 0.001 Pa·s), g denotes gravity, and ρ denotes fluid density (ρ = 998.2 kg/m3).
Groundwater model
In our simulations, the subsurface flow model domain is totally saturated, and the governing equations according to the Darcy's law for an incompressible porous fluid are as follows:


                                                                                                                                         

                                                                                                                                   


where z is the elevation, p is the pressure, q is the Darcy flux, K is the hydraulic conductivity, and  is the fluid density [25].
Multicomponent reactive transport model
A multicomponent reactive transport model was developed to simulate major biogeochemical processes in bedforms, such as aerobic respiration, nitrification and denitrification. Four reactive compounds (DOC, DO, NO3− and NH4+) were used as source inputs at the sediment–water interface (SWI).
Reactive transport for steady-state reactions was simulated as follows:


                                                                         






where   denotes the solute species’ kinetic rate (in source/sink terms),   is the solute species’ concentration, and   is the sediment porosity ( = 0.3). D () is the hydrodynamic dispersion tensor, is defined as [26]:


                                                                                                              







where  is the molecular diffusion coefficient ( = 1 × 10-9 m2/s),  is the transverse dispersivity coefficient ( = 0.001 m),  is the longitudinal dispersivity coefficient (  = 0.01 m) [27, 28].
The oxidation of DOC is considered the key reaction and the direct source of chemical energy in this study. For the oxidation of DOC, a first-order degrading kinetics was assumed:


                                                                                                                                                     



where  is the constant of DOC degradation and  is the DOC concentration.
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Figure 2. Model domains and boundaries for water flow and nutrient transport.
The electrons produced by the oxidation of DOC (i.e., electron donor) are transferred to potential terminal acceptors such as O2 and NO3 in a hierarchical sequence, where aerobic respiration and nitrification are assumed to occur simultaneously, whereas denitrification occurs only when the O2 concentration is below the limit value. O2 and NO3 are, respectively, the primary and secondary electron acceptors.
The estimation of the reduction rate (rred,i) of electron acceptor i (i = 1 for O2 and i = 2 for NO3) is as follows:


                                                                                                                                         




where  and  are the moles of electrons created by the oxidation of per mole DOC and the reduction of per mole acceptor i respectively, and  is the fraction of electrons consumed by the ith reduction half-reduction, which is determined by a simplified Monod formation [21, 29]:


                                                                                                                                               






where   is zero. The term in parentheses accounts for the partial or total inhibition of electron acceptor i’s reduction rate due to the consumption of electron acceptor in prior reduction half-reactions.  is a parameter that accounts for the restriction imposed on  by the availability of electron acceptor i. At concentrations above the limit value, the decrease rate is independent of , but linearly proportional to  at lower concentrations:


                                                                                                                                     

For the nitrification rate, a bimolecular expression of the second order is utilized:


                                                                                                                                           


where  is the nitrification rate coefficient of second order. Consequently, the reaction rates of DOC, DO, NO3-, and NH4+ are determined:


                                                                                                                        

RESULTS AND DISCUSSION
Spatial distribution of DOC, O2, and NO3 in the streambed


Total influx along the SWI (), spatially summed biogeochemical reaction rate ( ) and nitrate removal efficiency () are used to quantify the effect of bank slope and ambient groundwater discharge on nitrogen cycling in the bedform.

The total influx along the SWI () are:


                                                                                                                                                


where i = DOC, O2, NO3−, NH4+; B is the unit length of the streambed, and  is the inward Darcy flux, respectively.
Figure 3 illustrates the distribution and the influx of DOC, O2 and NO3. Under neutral conditions, DOC is mainly distributed in the streambed below the main channel-floodplain interface and the floodplain. O2 is consumed by aerobic respiration in the shallow region of DOC distribution. NO3 is rapidly consumed by denitrification below the anoxic- aerobic boundary. The main channel bank slope angle of 90°, all solute entry fluxes and the solute distribution area are larger than other angles. The solute flux and the amount of solute in the groundwater medium increased as the angle increased. As the ambient groundwater flow decreased, the solute flux increased further. However, all the curves of the relationship between solute flux and ambient groundwater flow have inflection points: 90° at -0.1 m/d (slight losing condition) and 30°-60° at 0.1 m/d (slight gaining condition).
Reaction rates in the streambed




The spatially summed reaction rates (e.g., respiration , nitrification , denitrification  and net denitrification rates ) were calculated by integrating the distributed reaction rates over the streambed domain (A) of the HZ:


                                                                                                                                    

Figure 4 shows (a) aerobic respiration, (b) nitrification, (c) denitrification, and (d) net denitrification rate under different ambient groundwater flows. The intensity of aerobic respiration and nitrification decreases with increasing ambient groundwater flow. At an ambient groundwater flow of 0.25 m/d, aerobic respiration and denitrification reach zero at 30-60°, while 90° do not reach zero even under qbot = 1 m/d. Ambient groundwater flow is less than 0.65 m/d, and aerobic respiration intensity does not increase linearly with decreasing flow due to solute outflow from the bottom boundary.
The ambient groundwater flow is 0.55 m/d, and the intensity of denitrification and net denitrification reaches its peak. With a further decrease in ambient groundwater flow (<-0.9 m/d), the hyporheic zone changed from a sink of NO3 to a source of NO3, at which point nitrification dominated.
Nitrate removal efficiency of hyporheic zone

The temporal NO3− removal efficiency () can be represented using a dimensionless number:


                                                                                                                                      

The removal efficiency increased as qbot increased at qbot = -1m/d ~ -0.5 m/d, and the higher the bank slope angle, the lower the removal efficiency (Figure 5). The highest removal efficiency was reached 0.8 at 30° with qbot = -0.5 m/d. Although the main channel bank slope angle of 90° would have the maximum solute influx, the reaction strength limited the removal of these NO3, and most of the solute left the model before being able to react. The hyporheic zone became a source of NO3 at ambient groundwater flows lower than -0.9 m/d, which was due to the lack of sufficient anoxic zones in the model. While the model domain seemed to limit the reactions, biogeochemical reactions could hardly occur in deeper areas.
CONCLUSIONS
In this paper, a 3D hydrodynamic model coupled to a 2D groundwater and biogeochemical model was applied to investigate the effect of bank slope angle and ambient groundwater discharge. A denitrification zone was found below the floodplain for bank slope angle = 90°, being elongated in the horizontal direction with smaller angles. Furthermore, a lower angle of the bank slope decreased N entering the streambed and increased nitrogen removal. A decrease in ambient groundwater affected negatively both aerobic respiration and denitrification reactions. The model becomes a source of NO3 at ambient groundwater flows less than -0.9 m/d.
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Figure 3. (a) Spatial distribution of nutrients in the hyporheic zone. (b) Nutrients influx along the SWI.
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Figure 4. The spatially summed (a) respiration, (b) nitrification, (c) denitrification and (d) net denitrification rate.
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Figure 5. The nitrate removal efficiency (Nre) under different bank slope angles and ambient groundwater discharges.
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